
PROBLEMS
Individual part

Problem A (Algebra & Combinatorics).
Let (R,+, ·) be a commutative ring. If I and J are two ideals of R then prove that

√
I ∩ J =

√
I ∩

√
J

and find n such that
nZ =

√
8Z ∩

√
11Z ∩

√
2024Z.

Remark
The radical

√
I of an ideal I is an ideal which consists of all elements in the ring with some

power in I, i.e. √
I = {a ∈ R : ∃

n⩾1
an∈I } .

Problem C (Calculus & Mathematical Analysis).
Prove that

∞∑
n=1

n2024

n!
̸∈ Q.

Problem E (Equations & Inequalities).
Find all functions f : R → R satisfying

f(A△B) = f(A)△f(B),

where △ is the symmetric difference of sets: A△B = (A \B) ∪ (B \A).
Remark
We define f(A) = {x∈R: ∃

a∈A
f(a) = x } for any subset A⊂R.

Problem G (Geometry & Linear Algebra).
Let xn denote the maximal determinant of an n×n matrix with entries equal to ±1. Does the
sequence n

√
xn have a finite limit?

Problem P (Set Theory & Probability).
Let (X,≼) be a partially ordered set such that for all subsets A,B ⊂ X the following property
is satisfied (

∀
x∈A
y∈B

x ≼ y

)
=⇒ ∃

z∈X

((
∀

x∈A
x ≼ z

)
∧
(
∀

y∈B
z ≼ y

))
.

(i) Show that every order preserving function f : X → X (i.e. ∀
x,y∈X

x ≼ y ⇒ f(x) ≼ f(y)) has
a fixed point (i.e. there is an x0 ∈ X such that f(x0) = x0).

(ii) Give an example of X and f , where the property is satisfied only for non-empty subsets
A,B of X and f has no fixed point.
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Team part

Problem A.1.
Find all n ∈ N+ such that there exist two cycles c1, c2 of length n in Sn, such that c1 and c2 are
the generators of Sn.
Remark
Generators for a group G is a subset of elements S ⊂ G such that every element of G can be
expressed as a combination (using the group operation) of finitely many elements from S and
their inverses. The smallest subgroup of G that contains {g1, . . . , gn} is denoted ⟨g1, . . . , gn⟩,
and if ⟨g1, . . . , gn⟩ = G, we say that {g1, . . . , gn} generates G.

Problem A.2.
Let p and q be distinct prime numbers. Let G be a group of order p3 ·q such that its commutator
subgroup K is of order q. Let H be a Sylow p-subgroup of G.

(a) Show that H is abelian and G = HK.

(b) Show that there are elements h ∈ H and k ∈ K such that hk ̸= kh, and deduce that p
divides q−1.

Remark
A Sylow p-subgroup of G is a subgroup whose order is the highest power of p dividing the order
of the group G. There always exists at least one Sylow p-subgroup of a group of order p ·m.

Problem C.1.
Find the limit

lim
n→∞

(∫ 1

0

ex/ndx

)n

.

Problem C.2.
Calculate the sum

∞∑
n=1

(−1)n−1

(
n

( ∞∑
k=n+1

1

k2

)
− 1

)
.

Problem E.1.
Prove that ∫ π/2

0

(cosx)sin x

(cosx)sin x + (sinx)cos x
dx =

π

4
.

Problem E.2.
Find all differentiable functions f :R → R satisfying the equation

f(x+ y) = f ′(x)f(y) + f(x)f ′(y)

for all x, y ∈ R.
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Problem G.1.
Let q∈(0, 1) and let us construct a q-spiral as follows. An arc of a quater of circle of radius 1 is
drawn inside a 1×1 square. Then it is connected to a second quater of circle of radius q drawn
in a q×q square, and then a third arc is drawn in a q2×q2, and so on ad infinitum (an example
is shown in the figure below). Describe the shape formed by limiting endpoints of all q-spirals
for all q ∈ (0, 1).

Figure G.1: Example of a q-spiral

Problem G.2.
Let the numbers x1, x2, . . . xn be in [0, 1] and let us consider a matrix A with entries equal to
aij = |xi − xj |. Find the maximal possible value of |detA|.

Problem P.1.
Does there exist a family of compact sets A1, A2, A3, . . . ⊂ Q such that any compact subset K
of rationals is contained in some An (i.e. (K ⊂ Q and K is compact) ⇒ ∃n K ⊆ An)?
Remark
A subset of real numbers R is compact if and only if it is closed and bounded in R.

Problem P.2.
Flea Frank is fleeing, jumping along the grid Z2 from a spider located at origin (0, 0). In the
first step, the flea jumps from (0, 0) to (1, 0). In next steps, at each vertex, it jumps to one of
the three nearest vertices with equal probability, except for the one it came from. Its choices
are random and independent.
Calculate the expected square of the distance of Flea Frank from the origin after n jumps.
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SOLUTIONS



Problem A
Let (R,+, ·) be a commutative ring. If I and J are two ideals of R then prove that

√
I ∩ J =

√
I ∩

√
J

and find n such that
nZ =

√
8Z ∩

√
11Z ∩

√
2024Z.

Remark
The radical

√
I of an ideal I is an ideal which consists of all elements in the ring with some

power in I, i.e. √
I = {a ∈ R : ∃

n⩾1
an∈I } .

[Proposed by: Pirmyrat Gurbanov and Murat Chashemov from: International University for the Humanities and Development]

Solution:
First, we claim that, if I ⊂ J , then

√
I ⊂

√
J . Indeed, if x ∈

√
I, then there exists n such that

xn ∈ I ⊂ J and x ∈
√
J , from which it follows that

√
I ⊂

√
J .

Since I ∩ J ⊂ I and I ∩ J ⊂ J , then
√
I ∩ J ⊂

√
I and

√
I ∩ J ⊂

√
J , from which it follows that√

I ∩ J ⊂
√
I ∩

√
J . Now, suppose x ∈

√
I ∩

√
J . Then, there exist two integers m,n such that

xn ∈ I and xm ∈ J. On account of the definition of an ideal, we have xn ·xm belongs to I and to
J .So, xn · xm = xn+m ∈ I ∩ J. Hence, x is an element of

√
I ∩ J and

√
I ∩

√
J ⊂

√
I ∩ J . From

the preceding, we get
√
I ∩ J =

√
I ∩

√
J , as desired.

As for the second question, in Z we have that
√
2024Z is the set of integers x such that there

exists a power xn which is a multiple of 2024. Since 2024 = 23 · 11 · 23 then a power of x, say xn,
will be divisible by these factors if and only if x is divisible by 2 · 11 · 23 = 506, and one have
that

√
2024Z = 506Z. Similarly,

√
11Z = 11Z and

√
8Z = 2Z.

Finally, we get √
8Z ∩

√
11Z ∩

√
2024Z = 2Z ∩ 11Z ∩ 506Z = 506Z

as 506Z ⊂ 2Z and 506Z ⊂ 11Z (both 2 and 11 divide 506).
2
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Problem A.1
Find all n ∈ N+ such that there exist two cycles c1, c2 of length n in Sn, such that c1 and c2 are
the generators of Sn.
Remark
Generators for a group G is a subset of elements S ⊂ G such that every element of G can be
expressed as a combination (using the group operation) of finitely many elements from S and
their inverses. The smallest subgroup of G that contains {g1, . . . , gn} is denoted ⟨g1, . . . , gn⟩,
and if ⟨g1, . . . , gn⟩ = G, we say that {g1, . . . , gn} generates G.

[Proposed by: Leszek Pieniążek from: Jagiellonian University]

Solution:
For odd n cycles ci are even, so every σ ∈ ⟨c1, c2⟩ is even permutation. Thus there are no such

cycles.
For n = 2 we have obviously positive answer.
Let n = 2k, k > 1. Let c1 = (1, 2, 3, 4, . . . , n), c2 = (2, 1, 3, 4, . . . , n). One can check that c3 =
c1c2c1 · · · c2c1︸ ︷︷ ︸

2k−1 times

= (1, 2). Further c1c3c
−1
1 = (2, 3), c21c3c−2

1 = (3, 4), and so on. The transpositions

(k, k+1) for k = 1, . . . , n−1 generate Sn, so ⟨c1, c2⟩ = Sn. 2
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Problem A.2
Let p and q be distinct prime numbers. Let G be a group of order p3 ·q such that its commutator
subgroup K is of order q. Let H be a Sylow p-subgroup of G.

(a) Show that H is abelian and G = HK.

(b) Show that there are elements h ∈ H and k ∈ K such that hk ̸= kh, and deduce that p
divides q−1.

Remark
A Sylow p-subgroup of G is a subgroup whose order is the highest power of p dividing the order
of the group G. There always exists at least one Sylow p-subgroup of a group of order p ·m.

[Proposed by: Pirmyrat Gurbanov and Murat Chashemov from: International University for the Humanities and Development]

Solution:
(a) Since K is the commutator subgroup of G, K is normal in G and G/K is abelian. So, if
H · K = KH is a subgroup of G. Since |K|= q, |H|= p3, H ∩ K = {e} and |HK|= p3q = |G|.
Hence G = HK and H ≃ H/(e) = H/H ∩K ≃ HK/K ≃ G is abelian.
(b) Suppose that for any elements h ∈ H and k ∈ K, we have hk = kh. Since K is abelian
and H is abelian, then G = HK is abelian. This contradicts the fact that the commutator
subgroup K of G is of order q. This proves (b).
(c) First, we claim that H is not normal in G. Otherwise, for any h ∈ H and k ∈ K, hkh−1k−1 ∈
H ∩ K = {e} and so hk = kh. By Sylow Theorem, the number of Sylow p-subgroups of G is
greater than 1 and divides q. So it is q. Again, by Sylow Theorem, p|q − 1. 2
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Problem C
Prove that

∞∑
n=1

n2024

n!
̸∈ Q.

[Proposed by: Robert Skiba from: Nicolaus Copernicus University in Toruń]

Solution:
We put

xk :=
1

e

∞∑
n=1

nk

n!
for all k ∈ N.

It is clear that
x1 =

1

e

∞∑
n=1

1

(n− 1)!
=

1

e

∞∑
n=0

1

n!
=

1

e
· e = 1.

Now we will show by induction that xk ∈ N for all k ∈ N. Indeed, let us assume that x1, ...xk ∈
N. We will show that xk+1 ∈ N. We have

e · xk+1 =

∞∑
n=1

nk+1

n!
=

∞∑
n=1

nk

(n− 1)!
=

∞∑
n=0

(n+ 1)k

n!
=

∞∑
n=0

1

n!
(n+ 1)k

=

∞∑
n=0

1

n!

k∑
m=0

(
k

m

)
nm =

∞∑
n=0

k∑
m=0

(
k

m

)
nm

n!
=

k∑
m=0

∞∑
n=0

(
k

m

)
nm

n!

=

k∑
m=0

(
k

m

) ∞∑
n=0

nm

n!
= e+

k∑
m=1

(
k

m

) ∞∑
n=0

nm

n!
= e+

k∑
m=1

(
k

m

)
exm

= e

(
1 +

k∑
m=1

(
k

m

)
xm

)
,

which implies that

xk+1 = 1 +

k∑
m=1

(
k

m

)
xm ∈ N.

Thus we have proved that xk ∈ N for all k, and hence
∞∑

n=1

n2024

n!
= e · x2024 ̸∈ Q.

This completes the solution. 2

Solution 2:
Let fk(x) = (. . . ((exx)′x)′ . . . x)′︸ ︷︷ ︸

k times

. Then fk(x) = ex Pk(x), where Pk is a polynomial of degree k

with integer coefficients.
Proof: by induction on k.
We have f1(x) = ex(x+ 1). If fk(x) = ex Pk(x), then

fk+1(x) = (ex Pk(x)x)
′ = ex Pk(x)x+ ex P ′

k(x)x+ ex Pk(x)

= ex(Pk(x)x+ P ′
k(x)x+ Pk(x)) ,

hence Pk+1(x) = Pk(x)x+ P ′
k(x)x+ Pk(x). ⋄

We have
fk(x) =

∞∑
n=1

nk

n!
xk−1 .

by simply differentiation term by term, as all series are absolutely convergent on the whole R.
As P2024 has integer coefficients, P2024(1) ∈ Z. Hence

∞∑
n=1

n2024

n!
= f2024(1) = e P2024(1) ̸∈ Q .

2
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Problem C.1
Find the limit

lim
n→∞

(∫ 1

0

ex/ndx

)n

.

[Proposed by: Robert Skiba from: Nicolaus Copernicus University in Toruń]

Solution:
Fix ε > 0. We know that

ex ≥ 1 + x for all x ≥ 0

and
ex ≤ 1 + aεx for all x ∈ [0, ε] with aε =

1

ε
(eε − 1) > 0.

Observe that
lim

ε→0+
aε = 1. (20.1)

From the above inequalities we get the following integral estimations:(∫ 1

0

ex/ndx

)n

≥
(∫ 1

0

(
1 +

x

n

)
dx

)n

=

(
1 +

1

2n

)n

−−−−→
n→∞

e1/2 (20.2)

and (∫ 1

0

ex/ndx

)n

≤
(∫ 1

0

(
1 +

aεx

n

)
dx

)n

=
(
1 +

aε
2n

)n
−−−−→
n→∞

eaε/2 (20.3)

Finally, taking into account (20.1), (20.2) and (20.3), we get the conclusion that

lim
n→∞

(∫ 1

0

ex/ndx

)n

= e1/2.

2
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Problem C.2
Calculate the sum

∞∑
n=1

(−1)n−1

(
n

( ∞∑
k=n+1

1

k2

)
− 1

)
.

[Proposed by: Pirmyrat Gurbanov and Murat Chashemov from: International University for the Humanities and Development]

Solution:
By Stolz-Cesaro theorem

lim
N→∞

N

∞∑
k=N+1

1

k2
= lim

N→∞

ζ(2)−
N∑

k=1

1
k2

1
N

= lim
N→∞

1
(N+1)2

1
N − 1

N+1

= 1,

so

ζ(2)−
N∑

k=1

1

k2
=

1

N
+ o

(
1

N

)
.

Hence, as N → ∞

∞∑
n=1

(−1)n−1

(
n

( ∞∑
k=n+1

1

k2

)
− 1

)

=

∞∑
n=1

(−1)n−1

(
n

(
ζ(2)−

N∑
k=1

1

k2

)
− 1

)

=− ζ(2)

N∑
n=1

(−1)nn+

N∑
n=1

(−1)nn

n∑
k=1

1

k2
+

N∑
n=1

(−1)n

=− ζ(2)

N∑
n=1

(−1)nn+

N∑
n=1

(−1)n +

N∑
k=1

(−1)k

k2
+

N∑
k=1

1

k2

N∑
n=k+1

(−1)nn

+

N∑
k=1

1

k2

(
(−1)NN − (−1)kk

2
+

(−1)N − (−1)k

4

)

=− (−1)N
(
N

2
+

1

4

)(
ζ(2)−

N∑
k=1

1

k2

)
+

ζ(2)

4
+

(−1)N − 1

2

+
1

2

N∑
k=1

(−1)k

k
− 1

4

N∑
k=1

(−1)k

k2

=− (−1)N
(
N

2
+

1

4

)(
1

N
+ o

(
1

N

))
+

ζ(2)

4
+

(−1)N − 1

2

− ln 2

2
− ζ(2)

8
+ o(1)

=
3ζ(2)

8
− ln 2

2
− 1

2
+ o(1)

N→∞−→ π2

16
− ln 2

2
− 1

2
.

2

Solution 2.:
We have

1 =

∞∫
1

dx

x2
=

∞∑
k=n+1

k
n∫

k−1
n

dx

x2
=

∞∑
k=n+1

(
− 1

x

∣∣∣∣∣
k
n

k−1
n

)
=

∞∑
k=n+1

n

k(k − 1)
.

Hence

n

( ∞∑
k=n+1

1

k2

)
− 1 = n

∞∑
k=n+1

(
1

k2
− n

k(k − 1)

)
= −n

∞∑
k=n+1

1

k2(k − 1)
.
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Thus
∞∑

n=1

(−1)n−1

(
n

( ∞∑
k=n+1

1

k2

)
− 1

)
=

∞∑
n=1

(−1)nn

∞∑
k=n+1

1

k2(k − 1)

k 7→k+1
=

∞∑
n=1

(−1)nn

∞∑
k=n

1

(k + 1)2k

=

∞∑
k=1

1

(k + 1)2k

k∑
n=1

(−1)nn

as we have
k∑

n=1

(−1)nn = −1 + 2− 3 + 4− · · · =

{
m, k = 2m,

−m, k = 2m− 1,

=

∞∑
k=1
2|k

1

(k + 1)2k

k

2
−

∞∑
k=1
2̸ |k

1

(k + 1)2k

k + 1

2

=

∞∑
m=1

1

2 (2m+ 1)2
−

∞∑
m=1

1

2 (2m− 1) 2m

and by renumerating m 7→ m−1 in the first term

=
1

2

∞∑
m=2

1

(2m− 1)2
− 1

2

∞∑
m=1

( 1

2m− 1
− 1

2m

)
=

1

2

( ∞∑
n=1

1

n2
−

∞∑
n=1

1

(2n)2
− 1
)
− 1

2

∞∑
n=1

(−1)n−1

n

=
1

2

( π2

6
− 1

4

π2

6
− 1

2

)
− 1

2
ln 2 =

π2

16
− 1

2
ln 2− 1

2
.

2
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Problem E
Find all functions f : R → R satisfying

f(A△B) = f(A)△f(B),

where △ is the symmetric difference of sets: A△B = (A \B) ∪ (B \A).
Remark
We define f(A) = {x∈R: ∃

a∈A
f(a) = x } for any subset A⊂R.

[Proposed by: Leszek Pieniążek from: Jagiellonian University]

Solution:
One easily checks, that f must be injective (for sets A = {a} and B = {b}, with a ̸= b). In an

obvious way every injection f fulfils the conditions, as

f(A ∪B) = f(A) ∪ f(B), f(A ∩B) = f(A) ∩ f(B), f(A \B) = f(A) \ f(B)

for any sets A and B. 2
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Problem E.1
Prove that ∫ π/2

0

(cosx)sin x

(cosx)sin x + (sinx)cos x
dx =

π

4
.

[Proposed by: Robert Skiba from: Nicolaus Copernicus University in Toruń]

Solution:
Let

I :=

∫ π/2

0

(cosx)sin x

(cosx)sin x + (sinx)cos x
dx.

Now we use the change of variables y = π
2 − x. Thus we get∫ π/2

0

(cosx)sin x

(cosx)sin x + (sinx)cos x
dx =

∫ π/2

0

(sin y)cos y

(cos y)sin y + (sin y)cos y
dy.

Hence
2I =

∫ π/2

0

1dx =
π

2
=⇒ I =

π

4
.

This completes the solution. 2
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Problem E.2
Find all differentiable functions f :R → R satisfying the equation

f(x+ y) = f ′(x)f(y) + f(x)f ′(y)

for all x, y ∈ R.
[Proposed by: Marcin J. Zygmunt from: University of Silesia, Katowice (Poland)]

Solution:
It is clear that the constant function f = 0 is one of the solutions.

Let us now assume that f is not constantly equal to zero (i.e. {x | f(x) ̸= 0} ≠ ∅ ). Putting
y = 0 gives f(x) = f(x)f ′(0) + f ′(x)f(0), hence either f(0) = 0 and f ′(0) = 1, or

f ′(x)

f(x)
=

1− f ′(0)

f(0)
= λ = const

for all such x that f(x) ̸= 0. In the second case we have the solution to the differential equation
(on the set {x | f(x) ̸= 0} ) equal to Ceλx for some constant C, which by continuity expands
to the whole real line R. Putting this function to the functional equation gives Ceλ(x+y) =
2λC2eλxeλy, hence either C = 0 or λ = 1

2C .
Now we return to the first case, i.e. f(0) = 0 and f ′(0) = 1. Hence we have

lim
x→0

f(x)

x
= lim

x→0

f(x)− f(0)

x
= f ′(0) = 1 .

Subtracting the functional equations for y = x0 and x or x+ h gives

f(x+ h+ x0)− f(x+ x0) = (f(x+ h)− f(x)) f ′(x0) + (f ′(x+ h)− f ′(x)) f(x0) ,

hence

f ′(x+ h)− f ′(x)

h
=

1

f(x0)

(
f(x+ x0 + h)− f(x+ x0)

h
− f ′(x0)

f(x+ h)− f(x)

h

)
h→0→ 1

f(x0)
(f ′(x+ x0)− f ′(x0) f

′(x)) ∈ R

when f(x0) ̸= 0.
Thus f is twice differentiable and so

0 =
∂f(x+ y)

∂x
− ∂f(x+ y)

∂y
= f ′′(x) f(y)− f(x) f ′′(y) ,

i.e. f ′′(x) f(y) = f(x) f ′′(y) or equivalently f ′′(x)

f(x)
= λ = const in a neighbourhood of x0 (for

which f(x0) ̸= 0). This gives us either f ′′(x) = 0 (for λ = 0) or f ′′(x) = λ f(x). Hence f(x) =
Cx+D in the first case and

f(x) =C sin
√

|λ|x+D cos
√
|λ|x for λ < 0

f(x) =C sinh
√
λx+D cosh

√
λx for λ > 0

and those solutions expand by continuity to the whole real line R. Now the conditions f(0) = 0
and f ′(0) = 1 gives D = 0 (in both cases) and C = 1 in the first case and C

√
|λ| = 1 in the

second case.
Finally we have that all possible solution are: 0, Ce

x
2C , x, C sin x

C , C sinh x
C . 2
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Problem G
Let xn denote the maximal determinant of an n×n matrix with entries equal to ±1. Does the
sequence n

√
xn have a finite limit?

[Proposed by: Robert Skiba from: Nicolaus Copernicus University in Toruń]

Solution:
The answer is negative. We will construct a sequence (An) of 2n × 2n matrices such that

2n
√

detAn −−−−→
n→∞

∞.

Indeed, let A0 = (1) and
An+1 =

(
An An

−An An

)
for all n ∈ N. Then

detAn+1 = det

(
An An

−An An

)
= det

(
An An

0 2An

)
= 22

n

(detAn)
2.

One can show by induction that

detAn = 2n2
n−1 for all n ≥ 0.

Finally, one has
2n
√
detAn =

2n
√
2n2n−1 = 2n/2 −−−−→

n→∞
∞.

This completes the solution. 2
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Problem G.1
Let q∈(0, 1) and let us construct a q-spiral as follows. An arc of a quater of circle of radius 1 is
drawn inside a 1×1 square. Then it is connected to a second quater of circle of radius q drawn
in a q×q square, and then a third arc is drawn in a q2×q2, and so on ad infinitum (an example
is shown in the figure below). Describe the shape formed by limiting endpoints of all q-spirals
for all q ∈ (0, 1).

Figure 1: Example of a q-spiral

[Proposed by: Marcin J. Zygmunt from: University of Silesia, Katowice (Poland)]

Solution:
We will work in the complex plane C. Let us fix q for a moment and let z0 = 0 be the start

point of the spiral. Let then zn be the point where the spiral exits the n-th square, i.e. z1 = i+1
for example. The diagonals zn−1zn and znzn+1 of the consecutive squares meet at right angle,
and their lengths differ by a multiple of q, hence

zn+1 − zn = (−i)q(zn − zn−1)

or equivalently
zn+1 = (1− iq)zn + iq zn−1

for all n ≥ 1. This is a linear recurrence relation with characteristic equation

λ2 = (1− iq)λ+ iq ,

whose solutions are 1 and −iq. So

zn = A 1n +B (−iq)n = A+B(−iq)n

for some constants A,B ∈ C. As z0 = 0 and z1 = 1 + i we get A = −B =
1 + i

1 + iq
, hence

zn =
1 + i

1 + iq
(1− (−iq)n) .

Thus the limiting endpoint of the spiral is

wq = lim
n→∞

zn = lim
n→∞

1 + i

1 + iq
(1− (−iq)n) =

1 + i

1 + iq
=

1 + q + i(1− q)

1 + q2
.

The set
{

1+i
1+iq , q ∈ (0, 1)

}
is an arc of a quarter of circle

∣∣∣z− 1+i
2

∣∣∣ = √
2
2 (with center in 1

2 (1+ i)

and radius
√
2
2 ) from 1 to 1 + i as(

1 + q

1 + q2
− 1

2

)2

+

(
1− q

1 + q2
− 1

2

)2

=
2 + 4q2 + 2q4

4(1 + q2)2
=

1

2
.

2
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Problem G.2
Let the numbers x1, x2, . . . xn be in [0, 1] and let us consider a matrix A with entries equal to
aij = |xi − xj |. Find the maximal possible value of |detA|.
[Proposed by: Leszek Pieniążek from: Jagiellonian University]

Solution:
We may assume 0 = x0 ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ 1 (permutation of xi’s gives permutation of

rows and columns of A which doesn’t change the answer). Let di = xi − xi−1 ≥ 0. We have

A =


0 x2 − x1 x3 − x1 . . . . . . xn − x1

x2 − x1 0 x3 − x2 . . . . . . xn − x2

x3 − x1 x3 − x2 0 x4 − x3 . . . xn − x3

...
...

... . . .
xn − x1 xn − x2 xn − x3 . . . . . . 0

 .

Subtracting from every column the next one doesn’t change the determinant and gives the
matrix

A′ =


−d2 −d3 −d4 . . . . . . xn − x1

d2 −d3 −d4 . . . . . . xn − x2

d2 d3 −d4 −d5 . . . xn − x3

...
...

... . . .
d2 d3 d4 . . . dn 0

 .

Every column except the last one consist of the same numbers with plus or minus, so we will
find determinant of

A′′ =


−1 −1 −1 . . . . . . xn − x1

1 −1 −1 . . . . . . xn − x2

1 1 −1 −1 . . . xn − x3

...
...

... . . .
1 1 1 . . . 1 0


and use detA′ =

∏n
i=2 di detA

′′. We apply the Laplace expansion due to the last column. Every
minor obtained by deleting last column and row number k has two equal columns k− 1 and k,
so we need the determinant of matrix

B =


1 −1 −1 . . . −1
1 1 −1 . . . −1
1 1 1 . . . −1
...

...
... . . .

1 1 1 . . . 1


and detA′′ = (xn−x1) detB(−1)n+1. If we add the thirst column to every other column we get
triangular matrix of dimension n− 1 with 2’s on diagonal in every column except the first one
with 1, so detB = 2n−2.
Now

|detA|= |detA′|=
n∏

i=2

di|detA′′|= (xn − x1)

n∏
i=2

di|detB|= 2n−2(xn − x1)

n∏
i=2

di.

A-GM inequality gives
∏n

i=2 di ≤
(∑n

i=2 di

n

)n−1

=
(

xn−x1

n−1

)n−1

. Moreover xn − x1 ≤ 1, so

|detA|≤ 2n−2

(n− 1)n−1

with equalities in every ≤ for xi =
i−1
n−1 . 2
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Problem P
Let (X,≼) be a partially ordered set such that for all subsets A,B ⊂ X the following property
is satisfied (

∀
x∈A
y∈B

x ≼ y

)
=⇒ ∃

z∈X

((
∀

x∈A
x ≼ z

)
∧
(
∀

y∈B
z ≼ y

))
.

(i) Show that every order preserving function f : X → X (i.e. ∀
x,y∈X

x ≼ y ⇒ f(x) ≼ f(y)) has
a fixed point (i.e. there is an x0 ∈ X such that f(x0) = x0).

(ii) Give an example of X and f , where the property is satisfied only for non-empty subsets
A,B of X and f has no fixed point.

[Proposed by: Marcin J. Zygmunt from: University of Silesia, Katowice (Poland)]

Solution:
Ad (i) Let C =

{
x∈X: x ≼ f(x)

}
and let D =

{
x∈X: ∀

y∈C
y ≼ x

}
. By the property there exists

zo ∈ X such that ∀
x∈C

x ≼ z0 and ∀
y∈D

z0 ≼ y. Note that if the set C were empty, then D would
be equal to X, so by the property z0 would have to be the smallest element of the set X. In
that case, z0 ≼ f(z0) ∈ X, which means that z0 ∈ C. Hence C ̸= ∅.
We will show that f(z0) = z0, or more precisely f(z0) ≼ z0 and f(z0) ≽ z0.
We have ∀

x∈C
x ≼ z0 ⇒ ∀

x∈C
x ≼ f(x) ≼ f(z0), hence f(z0) ∈ D. Moreover, as ∀

y∈D
z0 ≼ y then

z0 ≼ f(z0), hence z0 ∈ C.
On the other hand applying function f to x ≼ f(x) gives f(x) ≼ f(f(x)) for such x’s, so f(C) ⊂ C
and f(z0) ∈ C. Thus f(z0) ≼ z0.
So by the antisymmetry property of ordering ≼ we get f(z0) = z0.
Ad (ii) One can observe that the condition for non-empty sets will always be satisfied whenever
each subset of X, which is bounded above (respectively, bounded below), has the largest (re-
spectively, smallest) element. An example of such a set are the integers with the usual order
(Z,≤). An order-preserving function f :Z → Z that does not have a fixed point is, for example,
the shift f(n) = n+1.
Remark
In the analogical way it can be proved the existence of sup and inf for all subsets in X. Then the
thesis follows from the well known version of the Banach’s Fixpoint Lemma.

2
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Problem P.1
Does there exist a family of compact sets A1, A2, A3, . . . ⊂ Q such that any compact subset K
of rationals is contained in some An (i.e. (K ⊂ Q and K is compact) ⇒ ∃n K ⊆ An)?
Remark
A subset of real numbers R is compact if and only if it is closed and bounded in R.

[Proposed by: Marcin J. Zygmunt from: University of Silesia, Katowice (Poland)]

Solution:
The answer is negative. We will show it by contradiction.

Assume that such countable family {A1}n exists. Let Sn = [ 1
n+1 ,

1
n ] ∩ Q. We have Sn ̸⊂ An

as Sn = [ 1
n+1 ,

1
n ] (from the density of Q), . Hence there is a rational number qn ∈ Sn \ An.

As 1
n+1 ≤ qn ≤ 1

n we have that lim
n→∞

qn = 0, so the set K = {0, q1, q2, . . . } is closed. Moreover
K ⊂ [0, 1], so it is compact. But K ∋ qn /∈ An, hence K ̸⊂ An for every n. 2
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Problem P.2
Flea Frank is fleeing, jumping along the grid Z2 from a spider located at origin (0, 0). In the
first step, the flea jumps from (0, 0) to (1, 0). In next steps, at each vertex, it jumps to one of
the three nearest vertices with equal probability, except for the one it came from. Its choices
are random and independent.
Calculate the expected square of the distance of Flea Frank from the origin after n jumps.
[Proposed by: Marcin J. Zygmunt from: University of Silesia, Katowice (Poland)]

Solution:
We will work in the ring Z[i] instead of the grid Z2, identifying the pair (n,m) with the number
n+mi.
Let An denote the position of the flea after n-th jump. Clearly, the distance of Flea Frank from
the origin after n jumps equals to |An|, so our task is to calculate E|An|2.
We have A0 = 0 and A1 = 1. Moreover the statement of the problem gives the recurrence
relation

An+1 = An + ξn(An −An−1),

where the random variables ξn, n = 1, 2, . . . are independent and uniformly distributed over
the set {1, i,−i} (the flea with equal probability either continues in the previous direction,
turns left – which corresponds to multiplication by i –, or turns right – corresponding to mul-
tiplication by −i). We have E(ξn) = E

(
ξn

)
= 1

3 and |ξn|= |ξn|2= 1.
Now setting Bn+1 = An+1 −An, we get

Bn+1 = ξnBn = · · · = ξn · · · ξ1B1 =

n∏
k=1

ξk .

Hence,

An = Bn +An−1 = · · · = Bn + · · ·+B1 +A1 = 1 +

n−1∑
m=1

m∏
k=1

ξk ,

and

|An|2=An An =

(
1 +

n−1∑
m=1

m∏
k=1

ξk

)(
1 +

n−1∑
m=1

m∏
k=1

ξk

)

=1 +

n−1∑
m=1

m∏
k=1

|ξk|2+
n−1∑
m=1

(
m∏

k=1

ξk +

m∏
k=1

ξk

)
+

n−2∑
m=1

n−1∑
j=m+1

(
m∏

k=1

ξk

j∏
l=1

ξl +

m∏
k=1

ξk

j∏
l=1

ξl

)

=1 +

n−1∑
m=1

m∏
k=1

1 +

n−1∑
m=1

(
m∏

k=1

ξk +

m∏
k=1

ξk

)
+

n−2∑
m=1

n−1∑
j=m+1

m∏
k=1

|ξk|2
(

j∏
l=m+1

ξl +

j∏
l=m+1

ξl

)

=n+

n−1∑
m=1

(
m∏

k=1

ξk +

m∏
k=1

ξk

)
+

n−2∑
m=1

n−1∑
j=m+1

(
j∏

l=m+1

ξl +

j∏
l=m+1

ξl

)
.

Using the linearity of expectation and the independence of the variables ξn, we finally obtain
that

E|An|2=n+ 2

n−1∑
m=1

(
1

3

)m

+ 2

n−2∑
m=1

n−1∑
j=m+1

(
1

3

)j−m

= n+
3n−1 − 1

3n−1
+ 2

n−2∑
l=1

n− l − 1

3l

=2n+
3

2

(
1

3n
− 1

)
.

2
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