
PROBLEMS for 2022
Individual part

Problem A.
Let A1, . . . , A2022 be subsets of S = {1, 2, . . . , 1011} such that each set Ai has 11 elements and
each element in S is in exactly m sets Ai. Find m.

Problem C.
Show that

∞∫
0

e−tx

1 + x2
dx =

∞∫
0

sinx

t+ x
dx

for every t > 0.

Problem E.
Let a1, . . . , an be any positive real numbers. Show that

n
√
an1 + n

√
an1 + an2 + · · ·+ n

√
an1 + · · ·+ ann ⩾ n

√
an1 + (a1 + a2)n + · · ·+ (a1 + · · ·+ an)n .

When is equality achieved?

Problem G.
Let n ⩾ 3 be an integer and let P1, P2, . . . , Pn be distinct points in the plane, no three of them
collinear. Show that there is an angle �PiPjPk (for distinct i, j, k), which is less or equal to π

n
.

Problem P.
A certain type of bacteria splits every second either into two perfect copies of itself or disinte-
grates. The probability of splitting is equal to p, and all copies are independent.
What is the probability that one bacterium will produce an everlasting colony (i.e. the proba-
bility that a colony arising from a single bacterium will never die out)?
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Team part
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Team Part

Problem A.1.
Let n be a positive integer. Find the number of different solutions of the equation x2 ≡ x (
mod n) in the ring Zn of integers modulo n.

Problem A.2.
A family {Aτ}τ∈I consisting of at least two sets is called a partition of a given set X, if all sets
Aτ are pairwise disjoint and

⋃
τ∈I

Aτ = X.

(a) Construct a partition of the set of all positive integers into an infinite number of disjoint
infinite arithmetic progressions with different common differences.

(b) Can the set of all positive integers be partitioned into a finite number of such progres-
sions?

Problem C.1.
Show that both cosα and sinα are rational if and only if either tan α

2 is rational or α is an odd
multiply of π.

Problem C.2.
Let a continuous function f : (0,+∞) → R satisfy lim

n→∞
f(nα) = 0 for all α > 0. Must f(x) tend

to 0 as x → +∞?

Problem E.1.
Let A be a positive-definite Hermitian n×n matrix, with λ and µ its minimal and maximal
eigenvalues. Prove that

det

(
1

µ
A+ µA−1

)
⩾

(
trA

nµ
+

nµ

trA

)n

det

(
1

λ
A+ λA−1

)
⩾

(
n

λ tr(A−1)
+

λ tr(A−1)

n

)n

.

Problem E.2.
Find all functions f :R → R such that

f(x)f(x+ y) ⩾ f(x)2 + xy

for all x, y ∈ R.

Problem G.1.
Let each of the three main diagonals of a hexagon halves it (i.e. divides the hexagon into two
parts with equal areas). Show that these diagonals are concurrent (i.e. they have a point in
common).

Problem G.2.

Let A =

p q r
r p q
q r p

 , where p, q, r > 0 and p+ q + r = 1. Find lim
n→∞

An.
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Problem P.1.
We assume that k, n ∈ N, k < n. Let A be the event that in n tosses of a fair coin there are
at least k consecutive heads and let B be the event that in n tosses of a fair coin there are at
least either k+1 consecutive heads or k+1 consecutive tails. Which of the events has greater
probability?

Problem P.2.
Is there a subset A ⊂ [0, 1] such that A and [0, 1] \A are homeomorphic?
Remark
Two metric spaces X and Y are said to be homeomorphic if there is a bijection ϕ:X → Y such
that both ϕ and ϕ−1 are continuous on X and Y respectively.
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SOLUTIONS



Problem A
Let A1, . . . , A2022 be subsets of S = {1, 2, . . . , 1011} such that each set Ai has 11 elements and
each element in S is in exactly m sets Ai. Find m.
[Proposed by: from: ]

Solution:
Let M be the incidence 2022×1011 matrix, where rows represent the subsets A1, . . . , A2022 and
columns represent elements of S. It means that the mi,j element of M in the i-th row and
j-th column equals 1 if and only if the j-th element of S belongs to Ai’ otherwise the mi,j = 0.
Since every set Ai contains 11 elements, each row contains eleven 1, so the total number of
ones in our matrix is 11 · 2022. On the other hand each element of S belongs to exactly m sets
Ai. Thus each column of our matrix contains m ones. Hence the total number of ones in the
matrix is m · 1011 as there are 1011 columns. Thus we have m · 1011 = 11 · 2022 so m = 22. 2
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Problem A.1
Let n be a positive integer. Find the number of different solutions of the equation x2 ≡ x (
mod n) in the ring Zn of integers modulo n.
[Proposed by: from: ]

Solution:
The number of distinct solutions is equal to 2kn , where kn is the number of distinct prime
divisors of n, i.e. where n = pi11 · · · pikn

kn
and all pi are different. The equation x2 ≡ x (mod n)

is equivalent to the system of equations ∀j x2 − x = x(x− 1) ≡ 0 (mod p
kj

j ) . Since the gratest
common divisor of x and x−1 is one, each congruence x(x − 1) ≡ 0 (mod p

kj

j ) has only two
distinct solutions, x ≡ 0 and x ≡ 1 (mod p

kj

j ). Thus by the Chinese Remainder Theorem there
are 2kn distinct solutions to the given congruence. 2
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Problem A.2
A family {Aτ}τ∈I consisting of at least two sets is called a partition of a given set X, if all sets
Aτ are pairwise disjoint and

⋃
τ∈I

Aτ = X.

(a) Construct a partition of the set of all positive integers into an infinite number of disjoint
infinite arithmetic progressions with different common differences.

(b) Can the set of all positive integers be partitioned into a finite number of such progres-
sions?

[Proposed by: from: ]

Solution:
Ad (a). Let A(α, δ) denote an arithmetic progression A(α, δ) = {α, α+δ, α+2δ, . . . , α+nδ, . . . }.
We can represent a positive integer as the product of an odd number and a power of two in the
unique way as 2n(1 + 2m), which gives us the desired partitioning

N =
{
2n(1 + 2m) : m,n ∈ N

}
=

∞⋃
n=0

{
2n + 2n+1m : m ∈ N

}
=

∞⋃
n=0

A
(
2n, 2n+1

)
.

Ad (b). The answer is negative, i.e. the set of all positive integers cannot be partitioned into
at least two but a finite number of pairwise disjoint arithmetic progressions with different
common differences. We will proceed by contradiction.

Let N =
N⋃

k=1

A(ak, dk), where N ⩾ 2, and let us assign to each progression Ak its generating

series
∞∑

n=0

zak+ndk . Note that the series converges absolutely to fk(z) =
zak

1− zdk
for |z|< 1. Now,

since the sets A1, . . . , AN partition N = {1, 2, . . . }, the sum of their corresponding generating
series equals to the generating series of positive integers, i.e.

f1(z) + · · ·+ fN (z) =

∞∑
n=1

zn =
z

1− z
,

hence
zaN

1− zdN
=

z

1− z
−

N−1∑
k=1

zak

1− zdk
. (18.1)

Without loss of generality we can assume that 1 < d1 < d2 < · · · < dN . Passing to the limit as
z tends to ξ = e2πi/dN (i.e. to the primitive dN -th root of unity) gives the contradiction, as the

right-hand side of (18.1) converges to ξ

1− ξ
−

N−1∑
k=1

ξak

1− ξdk
(because ξδ ̸= 1 for 0 < δ < 1), and

its left-hand side simultaneously diverges to the infinity. 2
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Problem C
Show that

∞∫
0

e−tx

1 + x2
dx =

∞∫
0

sinx

t+ x
dx

for every t > 0.
[Proposed by: from: ]

Solution 1.:

Lemma 1
We have

+∞∫
0

sinx e−tx dx =
1

1 + t2
.

Proof lemma:
+∞∫
0

sinx e−tx dx =− cosx e−tx
∣∣∣x=+∞

x=0
− t

+∞∫
0

cosx e−tx dx

=1− t

+∞∫
0

cosx e−tx dx

=1− t sinx e−tx
∣∣∣x=+∞

x=0
− t2

+∞∫
0

sinx e−tx dx.

Hence

(1 + t2)

+∞∫
0

sinx e−tx dx = 1 ,

which gives the desired equality. ⋄

Let us fix t > 0 and let It(u) =
∞∫
0

sinx e−(t+x)u

t+ x
dx . Hence

d

du
It(u) =

∞∫
0

d

du

sinx e−(t+x)u

t+ x
dx

=− e−tu

∞∫
0

sinx e−xu dx

= − e−tu

1 + u2

by the lemma. As It(+∞) = 0, we have
∞∫
0

sinx

t+ x
dx = It(0) = It(0)− It(+∞) = −

∞∫
0

d

du
It(u) du

=

∞∫
0

e−tu

1 + u2
du =

∞∫
0

e−tx

1 + x2
dx

2

Solution 2.:
Let

f(t) =

∞∫
0

e−tx

1 + x2
dx and g(t) =

∞∫
0

sinx

t+ x
dx .
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We will show that both functions f and g satisfy the equation y′′(t) + y(t) = 1
t with the same

boundary conditions.
As we have ∣∣∣∣ ddt e−tx

1 + x2

∣∣∣∣ = xe−tx

1 + x2
⩽ e−xt,∣∣∣∣ d2dt2 e−tx

1 + x2

∣∣∣∣ =x2e−tx

1 + x2
⩽ e−tx,∣∣∣∣ ddt sinxt+ x

∣∣∣∣ = |sinx|
(t+ x)2

⩽
1

(t+ x)2
,∣∣∣∣ d2dt2 sinx

t+ x

∣∣∣∣ =2
|sinx|
(t+ x)3

⩽
2

(t+ x)3
,

both integrals can be differentiated under the integral sign by the Leibniz integral rule for
Lebesgue integral. Hence

f ′(t) =
d

dt

∞∫
0

e−tx

1 + x2
dx =

∞∫
0

−xe−tx

1 + x2
dx ,

f ′′(t) =
d

dt

∞∫
0

−xe−tx

1 + x2
dx =

∞∫
0

x2e−tx

1 + x2
dx

=

∞∫
0

1 + x2 − 1

1 + x2
e−txdx =

∞∫
0

e−txdx−
∞∫
0

e−tx

1 + x2
dx

=
1

t
− f(t)

and

g′(t) =
d

dt

∞∫
0

sinx

t+ x
dx = −

∞∫
0

sinx

(t+ x)2
dx ,

g′′(t) = 2

∞∫
0

sinx

(t+ x)3
dx = − sinx

(t+ x)2

∣∣∣∣x=∞

x=0

+

∞∫
0

cosx

(t+ x)2
dx

= − cosx

t+ x

∣∣∣∣x=∞

x=0

−
∞∫
0

sinx

t+ x
dx =

1

t
− g(t) ,

where we integrated by parts in calculation of the second derivative. Hence the difference
f − g is the solution of the well-known differential equation y′′ + y = 0. Thus

f(t)− g(t) = A cos t+B sin t

for some real constants A and B.
On the other hand both integrals tends to 0 as t tends to infinity, so

lim
t→+∞

(f(t)− g(t)) = lim
t→+∞

f(t)− lim
t→+∞

g(t) = 0 ,

which implies A = B = 0, and therefore f(t) = g(t) as desired. 2
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Problem C.1
Show that both cosα and sinα are rational if and only if either tan α

2 is rational or α is an odd
multiply of π.
[Proposed by: from: ]

Solution 1.:
The equivalence follows from a simple geometrical fact. Let O = (0, 0), A = (−1, 0), B = (1, 0)
and C = (cosα, sinα). Of course the angle �BOC = α. Let us assume that α is not an odd
multiply of π, i.e. points A and C are distinct. Otherwise cosα = −1 and sinα = 0, which are
both rational.
All points A,B,C lie on the unit circle, hence �BAC = 1

2�BOC = 1
2α. Thus the slope of the

line AC is equal to tan α
2 . On the other hand, as triangle △ABC is a right triangle, the line

BC is perpendicular to AC, hence its slope is equal to −( tan α
2 )

−1.
Now if the tan α

2 is rational then the point of intersection of the lines AC and BC (i.e. point
C) has rational coordinates (being the solution of system of linear equations with rational
coefficients).
Conversely, if point C has rational coordinates, the slope of the line AC is also rational, as it
passes through two points (i.e. A and C), whose coordinates are rational. 2

Solution 2.:
The angle α is an odd multiply of π if and only if cos α

2 = 0. In that case cosα = −1 and sinα = 0
(which are both rational), and vice-versa. So let us assume now that α is not an odd multiply
of π.

Implication (⇒).
We have

sinα = 2 sin
α

2
cos

α

2
(20.1)

and
1 + cosα = 2 cos2

α

2
.

Dividing above equations (under the assumption that cos α
2 ̸= 0) gives

tan
α

2
=

sinα

1 + cosα
.

which means that the tan α
2 is a rational number as long as cosα and sinα are rational.

Implication (⇐).
In addition to (20.1) we have also

cosα = cos2
α

2
− sin2

α

2
.

Using the trigonometric identity 1 = cos2 α
2+sin2 α

2 leads (under the assumption that cos α
2 ̸= 0)

to
sinα =

2 sin α
2 cos α

2

cos2 α
2 + sin2 α

2

=
2 tan α

2

1 + tan2 α
2

and
cosα =

cos2 α
2 − sin2 α

2

cos2 α
2 + sin2 α

2

=
1− tan2 α

2

1 + tan2 α
2

.

which shows that cosα and sinα are rational as long as tan α
2 is a rational number. 2

11



Problem C.2
Let a continuous function f : (0,+∞) → R satisfy lim

n→∞
f(nα) = 0 for all α > 0. Must f(x) tend

to 0 as x → +∞?
[Proposed by: from: ]

Solution:
Yes, it must, i.e. lim

x→+∞
f(x) = 0. To show it we will need

Baire’s Category Theorem
A non-empty complete metric space is not a set of the first category (i.e. meager set). That is, it
is not a countable union of nowhere dense sets.
Corollary

If R =

∞⋃
n=1

Fn, where all Fn are closed, then at least one Fn0
must contain a non-empty interval.

The above theorem (and its corollary) is in a standard course of real analysis, so we cite it
without proof.
Let now ε > 0 and let

Fk =
{
a > 0 : |f(na)| ⩽ 1

2
ε for all n ⩾ k

}
.

All sets Fk are closed as the function f is continuous. Moreover Fn ⊂ Fn+1, and
∞⋃

n=1

Fn = R

by assumptions on the function f . Hence, the corollary of Baire’s Category Theorem shows
that there exist an n0 and a non-empty interval (a0, b0) such that (a0, b0) ⊂ Fn0

. It follows from
properties of the set Fn0

that |f(x)| ⩽ 1
2ε for x ∈ (ma0,mb0), where m = n0, n0+1, n0+2, . . .

Let now N =

⌊
a0

b0 − a0

⌋
> 0. We have (ma0,mb0) ∩ ((m + 1)a0, (m + 1)b0) ̸= ∅ for all m > N ,

as mb0 > (m+ 1)a0 for such m. Hence |f(x)| ⩽ 1
2ε < ε for all x > max(n0, N + 1) · a0. Since the

initial choice of epsilon was arbitrary, we get lim
x→+∞

f(x) = 0. 2
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Problem E
Let a1, . . . , an be any positive real numbers. Show that

n
√

an1 + n
√

an1 + an2 + · · ·+ n
√
an1 + · · ·+ ann ⩾ n

√
an1 + (a1 + a2)n + · · ·+ (a1 + · · ·+ an)n .

When is equality achieved?
[Proposed by: from: ]

Solution:
Let us fix n ∈ N and let Vn be a linear spaceRn equiped with the norm ∥v∥= n

√
|v1|n+ · · ·+ |vn|n ,

where v = (v1, . . . , vn) ∈ Vn. Let us now consider vectors v1, . . . , vn ∈ Vn given by

v1 = (a1, 0, 0, . . . , 0),

v2 = (a2, a1, 0, . . . , 0),

...
vn = (an, an−1, an−2, . . . , a1).

Then the inequality to be proved becomes the triangle inequality

∥v1∥+ · · ·+ ∥vn∥⩾ ∥v1 + · · ·+ vn∥.

Equality can be only achieved when all vectors v1, . . . , vn are collinear, and this is only possible
when all but the last are equal to zero. This means that equality is achieved if and only if
a1 = · · · = an−1 = 0. 2
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Problem E.1
Let A be a positive-definite Hermitian n×n matrix, with λ and µ its minimal and maximal
eigenvalues. Prove that

det

(
1

µ
A+ µA−1

)
⩾

(
trA

nµ
+

nµ

trA

)n

det

(
1

λ
A+ λA−1

)
⩾

(
n

λ tr(A−1)
+

λ tr(A−1)

n

)n

.

[Proposed by: from: ]

Solution:
Any Hermitian matrix A can be diagonalized by a unitary matrix, i.e. there exist matrices:
unitary U and diagonal D with λ1, . . . , λn on the main diagonal, such that A = UDU−1. Note
that 0 < λ = λ1 ⩽ λ2 ⩽ · · · ⩽ λn = µ, because A is positive-definite.
If t > 0 then

det

(
1

t
A+ tA−1

)
= det

(
U

(
1

t
D + tD−1

)
U−1

)
= det

(
1

t
D + tD−1

)
=

n∏
k=1

(
λk

t
+

t

λk

)
.

Let f(x) = ln

(
x

t
+

t

x

)
. As the second derivative

f ′′(x) =
(t2 + (2 +

√
5x2)(t2 + (2−

√
5)x2)

x2(x2 + t2)2
> 0

for |x|< t
√
2 +

√
5 , it is easy to see that f is convex in the interval (0,

√
2 +

√
5 ]. Therefore if

µ ⩽ t
√

2 +
√
5 , then

1

n
ln det

(
1

t
A+ tA−1

)
=

1

n

n∑
k=1

(
λk

t
+

t

λk

)
=

1

n

n∑
k=1

f(λk)

⩾ f

(
1

n

n∑
n=1

λk

)
= f

(
trA

n

)
= ln

(
trA

nt
+

nt

trA

)
,

which implies that
det

(
1

t
A+ tA−1

)
⩾

(
trA

nt
+

nt

trA

)
.

Hence putting t = µ implies the first inequality (note that
√
2 +

√
5 > 2).

The second inquality follows from the first one by replacing A with A−1, and µ with 1
λ . 2
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Problem E.2
Find all functions f :R → R such that

f(x)f(x+ y) ⩾ f(x)2 + xy

for all x, y ∈ R.
[Proposed by: from: ]

Solution:
All fuctions satisfying problem’s conditions are:

±x, ±|x|, ±
√

x2 + a2 for a ∈ R .

Substituting y := x in (24) gives

f(x)f(2x) ⩾ f(x)2 + x2 > 0, (24.1)

hence f(x) ̸= 0, for all x ̸= 0. Then let us substitute x := y and y := x−y to get

f(y)f(x) ⩾ f(y)2 + y(x− y) . (24.2)

Hence we have
f(x)f(y) > 0

for both x ⩾ y ⩾ 0 and for x ⩽ y ⩽ 0. Hence the sign of f(x) is constant for x > 0 and x < 0.

Let us now assume that f(0) = 0 and put y := −x into (24) to get

0 = f(x)f(0) ⩾ f(x)2 − x2.

Hence x2 ⩾ f(x)2 for all x ∈ R. Now using (24.1) with (2x)2 ⩾ f(2x)2 gives

4x2f(x)2 ⩾ (f(2x)f(x))
2 ⩾ (f(x)2 + x2)

2
,

so 0 ⩾ (f(x)2 −x2)
2, hence f(x)2 = x2 for all x ∈ R. Since f doesn’t change its sign in negative

and in positive halfline, we get that ±x,±|x| are the only solutions satisfying f(0) = 0.

Now let us assume that f(0) = a ̸= 0. It’s easy to verify that if f is a solution, then −f is also a
solution (as well as f(−x) and −f(−x)). Thus, without loss of generality we can assume that
a > 0. Setting x := 0 and y := x into (24) gives a f(x) ⩾ a2 > 0, so f(x) ⩾ f(0) = a > 0 for all
x ∈ R. From (24.1) and AM-GM inequality we get f(x) f(2x) ⩾ 2 f(x) |x|, so by substitution
2x := x we have f(x) ⩾ |x| for all x ∈ R. Now (24.2), with an eventual interchange of variables,
gives

f(x) ⩾ f(y) +
y(x− y)

f(y)
and f(y) ⩾ f(x) +

x(y − x)

f(x)
,

hence
y(y − x)

f(y)
⩾ f(y)− f(x) ⩾

x(y − x)

f(x)
. (24.3)

Therefore
|y − x| ⩾ max

(
|y|
f(y)

,
|x|
f(x)

)
|y − x| ⩾ |f(y)− f(x)| ,

which shows that f is continuous. Moreover, from (24.3) we have y

f(y)
⩾

f(y)− f(x)

y − x
⩾

x

f(x)

for all y > x. Hence the function f is differentiable and f ′(x) =
x

f(x)
. This implies that

d
dxf(x)

2 = 2x, so f(x)2 = x2 + a2, as f(0) = a. Hence f(x) = ±
√
x2 + a2 , are the two solutions

of (24) under the constraint f(0) = ±a. 2
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Problem G
Let n ⩾ 3 be an integer and let P1, P2, . . . , Pn be distinct points in the plane, no three of them
collinear. Show that there is an angle �PiPjPk (for distinct i, j, k), which is less or equal to π

n
.

[Proposed by: from: ]

Solution:
The convex hull of points P1, P2, . . . , Pn is a convex k-gon, whose vertices are some of given
points P1, P2, . . . , Pn (they can be all of them), hence k ⩽ n. The sum of all vertex angles
is (k − 2)π. By the Pigeonhole principle1 there is a vertex whose angle is less or equal to
k−2
k π = (1 − 2

k )π ⩽ (1 − 2
n )π = n−2

n π. Let us now draw lines from this vertex to all other
points. These lines form n − 2 angles, whose sum is the vertex angle. Once again by the
Pigeonhole principle one of such angles is less than 1

n−2 (
k−2
k π) ⩽ 1

n−2
n−2
n π = π

n , which had to
be demonstrated. 2

1Other common names are Dirichlet’s drawer principle or Schubfachprinzip.
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Problem G.1
Let each of the three main diagonals of a hexagon halves it (i.e. divides the hexagon into two
parts with equal areas). Show that these diagonals are concurrent (i.e. they have a point in
common).
[Proposed by: from: ]

Solution:

Lemma 1
Let A,B and A′, B′ be two pairs of consecutive ver-
tices of a given polygon, and let diagonals AA′ and
BB′ divide the polygon into two parts with equal ar-
eas (cf. figure). Let P be the point of the intersection
of these diagonals.
Then

PA

PA′ =
PB′

PB
.

Proof: Diagonals AA′ and BB′ divide the polygon into parts of equal area, hence we have
SAPB+SAPB′ = SA′PB+SA′PB′ and SAPB+SA′PB = SAPB′ +SA′PB′ , where SXPY denotes the
area of the part of the polygon contained within the angle�XPY . Thus we get SAPB = SA′PB′ ,
which means that the areas of triangles △APB and △A′PB′ are equal. And since the angles
at the vertex P of both triangles are equal, the equality PA · PB = PA′ · PB′ holds, i.e.

PA

PA′ =
PB′

PB
.

⋄
The main diagonals of the hexagon ABCDEF either intersect at one point, or one of the

following cases occurs (see figure below)

Without loss of generality we can assume the first case (the second can be solved in an ana-
logical way). By lemma we have

LA

LD
=

LE

LB
,

KB

KE
=

KF

KC
and MC

MF
=

MA

MD
.

On the other hand we have
LE

LB
<

KE

KB
,

KC

KF
<

MC

MF
and MA

MD
<

LA

LD
.

Thus we have a contradiction as
LA

LD
=

LE

LB
<

KE

KB
=

KC

KF
<

MC

MF
=

MA

MD
<

LA

LD
.

Hence the only possible case is that the main diagonals concurre. 2
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Problem G.2

Let A =

p q r
r p q
q r p

 , where p, q, r > 0 and p+ q + r = 1. Find lim
n→∞

An.

[Proposed by: from: ]

Solution:
Let V = R3 and β, γ be two functionals given by γ(v) = (vx − vy)

2 + (vy − vz)
2 + (vz − vx)

2 and
β(v) = vx + vy + vz for v = (vx, vy, vz) ∈ V . We can see that γ(v) ⩾ 0 and equality holds if and
only if vx = vy = vz = 1

3β(v). The functional γ can be expressed also as

γ(v) = 2(v2x + v2y + v2z − vxvy − vyvz − vzvx) .

Applying both functional to

Av =

pvx + qvy + rvz
rvx + pvy + qvz
qvx + rvy + pvz

 ,

gives β(Av) = (p+ q + r)vx + (q + p+ r)vy + (r + q + p)vz = vx + vy + vz = β(v) and

γ(Av) = ((p− q)vx + (q − r)vy + (r − q)vz)
2

+ ((p− q)vx + (q − r)vy + (r − q)vz)
2

+ ((p− q)vx + (q − r)vy + (r − q)vz)
2

=((p− q)2 + (q − r)2 + (r − p)2)(v2x + v2y + v2z)

+ 2((p− q)(q − r) + (q − r)(r − p) + (r − p)(p− q))(vxvy + vyvz + vzvx)

= 2(p2 + q2 + r2 − pq − qr − rp)(v2x + v2y + v2z − vxvy − vyvz − vzvx)

= cγ(v) ,

where the constant c satisfies

c = p2 + q2 + r2 − pq − qr − rp =
1

2
((p− q)2 + (q − r)2 + (r − p)2) ⩾ 0

and
c = (p+ q + r)2 − 3(pq + qr + rp) = 1− 3(pq + qr + rp) < 1 ,

hence γ(Anv) = cnγ(v)
n→∞−−−−−→ 0. As β(Anv) = β(v) we get

Anv
n→∞−−−−−−→ 1

3

β(v)
β(v)
β(v)

 =
1

3

vx + vy + vz
vx + vy + vz
vx + vy + vz

 ,

hence

lim
n→∞

An =
1

3

1 1 1
1 1 1
1 1 1

 .

2
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Problem P
A certain type of bacteria splits every second either into two perfect copies of itself or disinte-
grates. The probability of splitting is equal to p, and all copies are independent.
What is the probability that one bacterium will produce an everlasting colony (i.e. the proba-
bility that a colony arising from a single bacterium will never die out)?
[Proposed by: from: ]

Solution 1.:
Let P be the probability that the initial bacterium will generate a perpetual colony. We have

P = p(1− (1− P )2) , (28.1)

because the first bacterium must divide at the start and then at least one of its descendants
must generate an everlasting colony. The equation (28.1) has two solutions: P1 = 2 − 1

p and
P2 = 0.
If p ⩽ 1

2 then the unique admissible solution is P = 0.
If p > 1

2 we will proceed as follows. Let f(x) = p(1 − (1 − x)2) = px(2 − x). Since function f
describes a probabilistic process, the value of the derivative f ′(x0) at the fixed point x0 of the
function f (i.e. x0 = f(x0)) will show whether x0 is admissible, and more specifically whether
x0 is a stable, attracting fixpoint. This is the case when the absolute value of the derivative
f ′(x0) is less than 1. If it is greater, the fixed point is repulsive, so it cannot be a limit point of
a probabilistic process.
In our case we have f ′(x) = 2p− 2px = 2p(1− x), so f ′(P1) = 2p(1− (2− 1

p )) = 2(1− p) < 1 and
f ′(P2) = 2p > 1 (where p > 1

2 ). Hence the correct and admissible solution is P = 2− 1
p . 2

Solution 2.:
Let Pn be the probability that a colony generated by one initial bacterium lasts at least n
seconds. The sequence (Pn) is decreasing (because the n-th generation requires all previous
generations to exist). We also, of course, have P0 = 1 and P1 = p. Furthermore, we have the
recursion

Pn+1 = p(1− (1− Pn)
2) , (28.2)

because the first bacterium must divide at the start, and then one of its descendants must
survive at least n generations. As the sequence (Pn) is decreasing and bounded from below
(by 0), it converges to the probability in question, which satisfy the equation

P = p(1− (1− P )2) = pP (2− P ) .

The equation has two solutions: 0 and 2 − 1
p . If p ⩽ 1

2 then 2 − 1
2 ⩽ 0, so the unique possible

solution is P = 0. If instead p > 1
2 , then if Pn > 2− 1

p we have (1− Pn)
2 < ( 1p − 1)2, hence

Pn+1 = p(1− (1− Pn)
2) > 2

(
1− (

1

p
− 1)

2
)
= 2− 1

p
.

Hence by induction on n, as P0 = 1 > 2− 1
p , we get Pn > 2− 1

p for all n. Thus lim
n→∞

Pn ⩾ 2− 1
p ,

so in this case the solution must be P = 2− 1
p . 2
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Problem P.1
We assume that k, n ∈ N, k < n. Let A be the event that in n tosses of a fair coin there are
at least k consecutive heads and let B be the event that in n tosses of a fair coin there are at
least either k+1 consecutive heads or k+1 consecutive tails. Which of the events has greater
probability?
[Proposed by: from: ]

Solution:
Let Ej be the subset of {H,T}j without k consecutive H for every j ∈ N. Fix j > k. Every
sequence in Ej may ends with terms (T ), (T,H), . . . , (T,H, . . . ,H︸ ︷︷ ︸

k−1

). Consequently

|Ej |=
j−1∑

m=j−k

|Em|

for every j > k.
Let Fj be the subset of {H,T}j without k+1 consecutive H and without k+1 consecutive T for
every j ∈ N. Fix j > k. Every sequence inFj may ends either with terms (T,H), . . . , (T,H, . . . ,H)︸ ︷︷ ︸

k+1

or with terms (H,T ), . . . , (H,T, . . . , T )︸ ︷︷ ︸
k+1

. Let a = (a1, . . . , aj) ∈ Fj . We find the greatest 1 ⩽ m <

j such that either (am, am+1) = (T,H) or (am, am+1) = (H,T ). Then (a1, . . . , am) ∈ Fm and
either (am+1, . . . , aj) = (H, . . . ,H)︸ ︷︷ ︸

j−m

in the first case or (am+1, . . . , aj) = (T, . . . , T )︸ ︷︷ ︸
j−m

in the second

case. Consequently

|Fj |=
j−1∑

m=j−k

|Fm|

for every j > k.
It is easy to check that |Em|= |Fm|= 2m for every 1 ⩽ m ⩽ k − 1. Moreover |Ek|= 2k − 1 and
|Fk|= 2k. Consequently

|Fj |=
j−1∑

m=j−k

|Fm|>
j−1∑

m=j−k

|Em|= |Ej |

for every j > k. Therefore

P (A) =
2n − |En|

2n
>

2n − |Fn|
2n

= P (B).

2
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Problem P.2
Is there a subset A ⊂ [0, 1] such that A and [0, 1] \A are homeomorphic?
Remark
Two metric spaces X and Y are said to be homeomorphic if there is a bijection ϕ:X → Y such
that both ϕ and ϕ−1 are continuous on X and Y respectively.

[Proposed by: from: ]

Solution 1.:
The answer is positive. Let R∗ denote the extended real line [−∞,+∞]. We have

[0, 1] ≃ R∗.

On the other hand
R∗ = { −∞} ∪

⋃
n∈Z

[n, n+ 1) ∪ {+∞} .

Let now B = { −∞} ∪
⋃
n∈Z

[2n, 2n+ 1) . We have B ≃ R∗ \B by the homeomorphism

ϕ(x) =

 +∞, for x = −∞;

x− 4n− 1, for x ∈ [2n, 2n+ 1).

The set A is the image of the set B in the homeomorphism between R∗ and [0, 1]. 2

Solution 2.:
It is mostly the same solution as the first one above, but with the setA and the homeomorphism
given in the explicite formulas.
As lim

x→∞

2x

2x + 1
= 1 and lim

x→−∞

2x

2x + 1
= 0 we have

[0, 1] = {0} ∪
⋃
n∈Z

[
2n

2n + 1
,

2n+1

2n+1 + 1

)
∪ {1} .

Let now
A = {0} ∪

⋃
n∈Z

[
22n

22n + 1
,

22n+1

22n+1 + 1

)
.

Hence
[0, 1] \A =

⋃
n∈Z

[
22n−1

22n−1 + 1
,

22n

22n + 1

)
∪ {1} .

The homeomorphism between A and [0, 1] \A is given by

ϕ(x) =


1, for x = 0;
0, for x = 1;

x− 22n−1−1
(2n+1)(2n−1+1) , for 2n

2n+1 ⩽ x < 2n+1

2n+1+1 .

The function ϕ is clearly bijective and, restricted to either A or [0, 1] \A, continuous. 2
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