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Problem A.1
Let Zn = Z/nZ be the ring of integers modulo n. Find all pairs of non-empty subsets A and
B such that A ∪B = Zn, A ∩B = ∅, A+B ⊂ A and A ·B ⊂ B.
(We define A+B = {a+ b : a∈A, b∈B} and A ·B = {a · b : a∈A, b∈B}, with all operations
performed modulo n).

Solution:
Let us consider any partition of Zn that meets the conditions. Note that if 1∈B, then for any
a∈A we have a = a·1 ∈B, which contradicts the assumption that sets A and B are distinct.
Therefore 1∈A. In the similar way, as a·0 = 0, we show that 0∈B.
Let now consider the set of integersZ as a covering set for Zn equipped with classical retraction
ψ : Z → Zn = Z/nZ. The counterimages Â = ψ−1(A) =

{
a+kn : a ∈ A, k ∈ Z

}
and B̂ =

ψ−1(B) =
{
b+kn : b∈B, k∈Z

}
satisfy the same conditions as A and B, now in the ring Z (i.e.

Â ∪ B̂ = Zn, Â ∩ B̂ = ∅, Â+ B̂ ⊂ Â and Â · B̂ ⊂ B̂).
We have a+ (−a) = 0∈B̂, hence either both a and −a belongs to Â, or both to B̂.
Let now d be the smallest positive element of B̂. Hence 1, 2, . . . , d−1 ∈ A. It is easy to prove
inductively that {1, 2, . . . , d−1} + {d, 2d, . . . , kd} ⊂ Â for each integer k, which leads us to the
conclusion that all numbers not divisible by d belong to the set Â. In particular, it follows that
each number divisible by d, but not divisible by d2, belongs to the set B̂
Suppose now that kd2∈Â for some integer of k. Then, as d∈B̂, we have kd2+d = (kd+1)d∈Â,
which contradicts the conclusion of the previous paragraph. This means that all numbers
divisible by d belong to the set B̂, and those not divisible by d – to the set Â.
Finaly, as d+ n ∈ B̂ (i.e. d+ n = kd for some integer k), the number d is a divisor of n.
It remains to be noted that, if B⊂Zn is the subset of numbers divisible by a fixed divisor of n,
and A is the subset of numbers indivisible by it, the conditions are met. �



Problem A.2
Find all polynomials P : R→ R such that P (Q) = Q.

Solution:
Suppose that P (x) =

∑n
j=0 ajx

j for some a0, . . . , an∈R and n∈N with an 6= 0 and every x∈R.
Then the matrix

A =


1 1 · · · 1
1 2 · · · 2n

...
... . . . ...

1 n+ 1 · · · (n+ 1)n




a0
a1
...
an

 =


P (1)
P (2)

...
P (n+ 1)


is a Vandermonde matrix and det(A) 6= 0. Let A−1 = [bi,j ]16i,j6n+1. Then

bi,j =
(−1)i+j det(A with dropped i-row and j-column)

det(A)

for all 1 6 i, j 6 n + 1. Since determinants of matrices with rational entries are rational
numbers, bi,j is a rational number for all 16 i, j6n+ 1. Consequently

a0
a1
...
an

 = A−1


P (1)
P (2)

...
P (n+ 1)


and a0, . . . , an∈Q. Hence there exists m∈N such that maj ∈Z for every 06j6n.
Suppose now that n>1. Let s be a prime number such that s > |man|+ · · ·+ |ma0|. Suppose
that there exists relatively prime numbers p∈Z and q∈N such that

mP

(
p

q

)
= s+ma0.

Then
manp

n + . . .+ma1pq
n−1 = p(manp

n−1 + . . .+ma1q
n−1) = qns

and p|s and q|man. Since s > |man|+ . . .+ |ma0| and s is a prime number, |p| > q and p = ±s.
Then

|mansn| = |manpn| = q|qn−1s−man−1pn−1 − . . .−ma1qn−2p| < qns+ q(s− |man|)sn−1.

This is equivalent to
|man|sn + |man|sn−1q < qns+ qsn.

But |man|>q. We have arrived at a contradiction.
Therefore n = 1 and P (x) = a1x+ a0 for some a0, a1∈Q. Now it is easy to see that P (Q) = Q,
if and only if P (x) = a1x+ a0 and a0, a1∈Q and a1 6= 0. �



Problem C.1
Suppose that f : [0, 1]→ R is continuous on [0, 1] and differentiable on (0, 1) with f(0) = 0 and
f(1) = 1. Prove that there exist 2020 distinct points xk ∈ (0, 1) such that

2020∑
k=1

1

f ′(xk)
= 2020.

Solution:
Let us choose 2021 points

w0 = 0 < w1 < w2 < · · · < w2019 < w2020 = 1

with the property:
f(wk) =

k

2020
for 0 6 k 6 2020.

This can be done since f admits the Darboux property. Now let us observe that the Mean
value theorem implies the existence of points xk ∈ (wk−1, wk) such that

f(wk)− f(wk−1)

wk − wk−1
= f ′(xk).

But
f(wk)− f(wk−1)

wk − wk−1
=
k/2020− (k − 1)/2020

wk − wk−1
=

1

2020

1

wk − wk−1
.

Consequently, one has

2020∑
k=1

1

f ′(xk)
=

2020∑
k=1

2020(wk − wk−1) = 2020

2020∑
k=1

(wk − wk−1) = 2020(w2020 − w0) = 2020.

�



Problem C.2
Let f : [0, 1] → [A,B] be a measurable function, where A < B are positive numbers. Prove

that
1∫

0

f(x) dx−

( 1∫
0

dx

f(x)

)−1
6
(√
B −

√
A
)2
,

and find a function for which equality is achieved.

Solution:
Let s(x) be defined by the relation f(x) = s(x)A + (1 − s(x))B for all x ∈ [0, 1], and let t =
1∫
0

s(x)dx. We have
1∫
0

f(x)dx = tA+ (1− t)B.

On the other hand, by convexity of homographic function 1
x , we have

1

f(x)
6
s(x)

A
+

1− s(x)

B
,

hence
1∫

0

dx

f(x)
6

t

A
+

1− t
B

=
tB + (1− t)A

AB
.

Also note that

0 6 (t
√
a − (1− t)

√
B )2 = tB + (1− t)A− t(1− t)

(√
B +

√
A
)2
,

so
tB + (1− t)A > t(1− t)

(√
B +

√
A
)2
.

Now
1∫

0

f(x) dx−

( 1∫
0

dx

f(x)

)−1
6 tA+ (1− t)B − AB

tB + (1− t)A
=
t(1− t)(B −A)2

tB + (1− t)A

6
t(1− t)(B −A)2

t(1− t)
(√
B +

√
A
)2 =

(√
B −

√
A
)2
,

as claimed.

To show the equality let us take function

f(x) =


A, 0 6 x 6

√
A√

A+
√
B
,

B,
√
A√

A+
√
B
< x 6 1.

Then
1∫

0

f(x) dx =
A
√
A +B

√
B√

A +
√
B

,

and
1∫

0

dx

f(x)
=

1√
A
√
B
.

Hence
1∫

0

f(x) dx−

( 1∫
0

dx

f(x)

)−1
=
A
√
A +B

√
B√

A +
√
B

−
√
A
√
B =

(B −A)(
√
B −

√
A )√

A +
√
B

=
(√
B −

√
A
)2
.

�



Problem E.1
Show that both equations (1) sin(tan(x)) = x and (2) tan(sin(x)) = x have a unique positive

solution. Determine which one is greater.

Solution:
We start with the following lemma:

Lemma 5.1
The equation

sinx = arctanx (5.1)

has a unique positive solution x0. It satisfies 1<x0<
√

3.

Proof: Let f(x) = sinx − arctanx. It is enough to show that the function f has only one
positive zero, and that it is located in the interval (1,

√
3).

We have f(0) = 0 and

f ′(x) = cosx− 1

1 + x2
> 1− 1

2
x2 − 1

1 + x2
=
x2(1− x2)

2(1 + x2)
> 0,

for 0<x<1. Hence f(x)>0 for 0 < x 6 1.
On the other hand we have arctanx > arctan

√
3 =

π

2
> 1 > sinx, that is f(x)< 0, for x>

√
3.

Hence, due to the continuity, the function f has at least one positive zero, and all its positive
zeros lie in the interval (1,

√
3).

Now we have

f ′′(x) = − sinx+
2x

(1 + x2)2
< − sin

π

4
+

2x

(2x)2
6 −
√

2

2
+

1

2
< 0

for 16x6
√

3. Hence f is a concave function on the interval [1,
√

3], so, due to f(1)>0>f(
√

3),
it has exactly one zero in this interval.

�

Let x0 be the positive solution of (5.1) (as in lemma 5.1). Since sinx 6 1 < π
2 , we can apply a

tangent to both sides of the equation. Hence the equation tan(sinx) = x has the same solution
as (5.1), i.e. x0.
On the other hand, substituting tan(x) for x in (5.1) gives the first of the considered equations.
So it has a unique solution x1 = arctanx0 in the interval

(
0, π2

)
. But left-hand side of the

equation does not exceed 1, so there are no more other positive solutions to the equation for
x> π

2 . Moreover we have also x161<x0. �



Problem E.2
Find all functions f : [0,∞)→ [0,∞) such that 2f(3x) + 4f(3y) 6 3f(2x+ 4y) for all x, y >0

Solution:
We claim that the only solutions are functions of the form f(x) = ax with a>0.
First, let F (x) = f(3x). Then the inequality takes form

2

3
F (x) +

4

3
F (y) 6 F

(2

3
x+

4

3
y
)
. (6.1)

Now putting x, y = 0 gives 2F (0) 6 F (0), so we have F (0) = 0. We will show that if F (c) = 0 for
some c>0, thenF (x) = 0 for all x. Indeed, if x and y satisfy 2

3x+ 4
3y = c, then 2

3F (x)+ 4
3F (y) 6 0,

and so F (x) = F (y) = 0. It follows that F (x) = 0 for all x in the interval
[
0, 32c

]
, and then for

all x in the interval
[
0,
(
3
2

)2
c
]
, and, continuing in this way, finally F (x) = 0 for all x> 0. In

this case, F (x) = 0 = 0 · x for all x.
Now assume F (x)> 0 for all x> 0. Two special cases of our condition (second variable set to
zero) are 2

3F (x)6F
(
2
3x
)

and 4
3F (x)6F

(
4
3x
)
. These are equivalent to

F (x)

x
6
F
(
2
3x
)

2
3x

and F (x)

x
6
F
(
4
3x
)

4
3x

for x>0.

Let A = inf
{
F (x)
x : 16x6 4

3

}
. Using the second inequality once again leads to A = inf

{
F (x)
x :

16x6
(
4
3

)2}, and, continuing in this way, finally gives A = inf
{
F (x)
x : 16x<∞

}
. We then use

the first inequality in the same way to get A = inf
{
F (x)
x : 0<x<∞

}
.

Next let G(x) = F (x) − Ax. The function G is non negative and satisfying (6.1). Moreover
inf
{
G(x)
x : 16x6 4

3

}
= 0. We claim G(1) = 0. Indeed, G

(
2
3 + 4

3y
)
> 2

3G(1) + 4
3G(y) > 2

3G(1) for
all y. So G(x)> 2

3G(1) for all x> 2
3 . Let now ε>0 and y∈

[
1, 43
]

with g(y) < ε. Since y>1> 2
3 ,

we have AG(1) 6 G(y) < ε. Since ε is arbitrary, we conclude that G(1) = 0. Thus G(x) = 0 for
all x>0, which yields F (x) = Ax, and f(x) = Ax

3 = ax for all x>0. �



Problem G.1
Let P1, P2, P3 be points on a parabola, and denote the triangle formed by the tangents to the
parabola at these points as4Q1Q2Q3. Compute the ratio of the area of the triangle4P1P2P3

to the area of the triangle 4Q1Q2Q3.

Solution:
Let us choose a Cartesian system of coordinates such that the equation of the parabola is
x2 = 4ay, and let the coordinates of the points be Pi = (4axi, 4ax

2
i ), for appropriately chosen

xi, i = 1, 2, 3. Hence the three tangent lines (denoted li respectively) are given by equations
2xix = y + 4ax2i , for i = 1, 2, 3. Then Qk as the intersection of li and lj is (2a(xi + xj), 4axixj).
The area of both triangles can be computed by a Vandermonde determinant:

S4P1P2P3
=

1

2
·
∣∣∣det

4ax1 4ax21 1
4ax2 4ax22 1
4ax3 4ax23 1

 ∣∣∣ = 8a2
∣∣(x1 − x2)(x2 − x3)(x3 − x1)

∣∣
and

S4Q1Q2Q3
=

1

2
·
∣∣∣det

2a(x2 + x3) 4ax2x3 1
2a(x1 + x3) 4ax1x3 1
2a(x1 + x2) 4ax1x2 1

 ∣∣∣
= 4a2

∣∣∣det

2a(x3 − x1) 4ax2(x3 − x1) 0
2a(x3 − x2) 4ax1(x3 − x2) 0
2a(x1 + x2) 4ax1x2 1

 ∣∣∣ = 4a2
∣∣(x3 − x1)(x2 − x3)(x1 − x3)

∣∣ .
We conclude that the ratio of the two areas is 2, regardless of the location of the three points
or the shape of the parabola. �



Problem G.2
A disk of radius R is covered by m rectangular strips of width 2 and infinite length. Prove

that m>R.

Solution:
Let us move to three dimensions. The disk is a projection of a sphere of radius R to the
xy-plane. And the strips are images of a space contained between two parallel planes, both
perpendicular to xy-plane. Now the problem becomes easy. The argument is based on the
following property of the sphere.

Lemma 8.1
The area of the surface cut from a sphere of radius R by two parallel planes at distance d from
each other is equal to 2πRd.

Proof: Let us assume that the sphere is centered at the origin and the planes are perpendic-
ular to the x-axis, namely they are {x = a} and {x = b}. The surface is obtained by rotating
the graph of the function f : [a, b] → R, f(x) =

√
R2 − x2 about the x-axis, where [a, b] is an

interval of length d. The area of the surface is given by integral

2π

b∫
a

f(x)

√(
f ′(x)

)2
+ 1 dx = 2π

b∫
a

Rdx = 2πRd .

�

Returning to the problem, the sphere has area 4πR2 and is covered by m surfaces, each – by
the lemma 8.1 – having area 4πR. The inequality m · 4πR > 4πR2 implies m > R, as desired.
�



Problem P.1
A group of k people play a game with a box containing k balls with their names. The first

player draws the ball and wins if his/her name is on the ball. Otherwise, the ball is returned
to the box, and the person whose name was on the drawn ball is the next player to draw. The
procedure continues until someone pulls out the ball with his/her name on it.
What is the probability of winning for each player?

Solution:
Let Ai = {player i wins} and Fi = {first ball containes the name of player i}. Then, using
conditional probabilities, we can write for every i 6= 1 (each player with i 6= 1 plays in the
same conditions)

P (Ai) = P (Ai|F1)P (F1) + P (Ai|Fi)P (Fi) +
∑

16=j 6=i

P (Ai|Fj)P (Fj).

But P (Ai|F1) = 0 (first player wins in the first draw), P (Ai|Fi) = P (A1) (after first draw player
i is in the role of beginning player) and P (Ai|Fj) = P (Ai). Thus above equation can be written
as

P (Ai) = P (A1)
1

k
+ (k − 2)P (Ai)

1

k
⇐⇒ P (A1) = 2P (Ai).

Moreover probability of infinite game is 0 (as the probability that the game will last longer
then m turns is (k−1k )m → 0 as m→∞), so we get P (A1) = 2

k+1 and P (Ai) = 1
k+1 for i 6= 1. �



Problem P.2
Let n∈N, n>1 and c>1. Suppose that A1, . . . , An and B1, . . . , Bn are two families of indepen-
dent events in a probability space (Ω,Σ, P ) such that Bk⊂Ak and c · P (Bk) > P (Ak) for every
k = 1, . . . , n. Show that

c · P (B1 ∪ · · · ∪Bn) > P (A1 ∪ · · · ∪An).

Solution:
It is clear that we may assume that c > 1. Suppose first that n = 2. It is easy to check that
p + q − pq > 0 for all p, q∈ [0, 1]. Let dj =

cP (Bj)−P (Aj)
(c−1)P (Aj)

for every j = 1, 2. Then 0 6 dj 6 1 and
0 6 P (Aj)dj 6 1 for every j = 1, 2. We have

c · P (B1 ∪B2)− P (A1 ∪A2)

= c
(
P (B1) + P (B2)− P (B1)P (B2)

)
− P (A1)− P (A2) + P (A1)P (A2)

= (c− 1)
(
P (A1)d1 + P (A2)d2 − P (A1)P (A2)d1d2

)
+

(cP (B1)− P (A1))(cP (B2)− P (A2))− c(c− 1)P (B1)P (B2) + (c− 1)P (A1)P (A2)

c− 1

>
(cP (B1)P (B2)− cP (B1)P (A2)− cP (B2)P (A1) + cP (A1)P (A2)

c− 1

=
c(P (A1)− P (B1))(P (A2)− P (B2))

c− 1
> 0.

Let now n > 2. We apply n−1 times the above procedure with the fact that family of events
A1∪A2, A3, . . . , An as well as B1∪B2, B3, . . . , Bn are independent. �


