
PROBLEMS for individual part

Problem A (Algebra & Combinatorics) [Proposed by Artur Michalak from Adam Mickiewicz University, Poznań]
Let n,m ∈ N, m ⩽ n. Find the value of the sum

n∑
k=m

(−1)k−m

(
k

m

)(
n

k

)
.

Solution to this problem is on page no. 4

Problem C (Calculus & Mathematical Analysis) [Proposed by Marcin J. Zygmunt from University of
Silesia, Katowice (Poland)]
Does there exist a sequence (an) of positive real numbers such that lim

n→∞
an = 0, while the

series
∞∑

n=1

1

n1+an
converges? If so, provide an example.

Solution to this problem is on page no. 5

Problem E (Equations & Inequalities) [Proposed by Robert Skiba from Nicolaus Copernicus University in Toruń
(Poland)]
For any positive integer n, find all nonnegative integers (x, y) such that

x! +y!

n!
= 3n!.

Solution to this problem is on page no. 6

Problem G (Geometry & Linear Algebra) [Proposed by Pirmyrat Gurbanov & Murat Chashemov from Inter-
national University for the Humanities and Development (Turkmenistan)]
Let A,B ∈ Mn(R) be symmetric matrices such that

(AB +BA−A−B − In)
2 = A2B − 2ABA+BA2.

Find rank(A2 +B2).
Solution to this problem is on page no. 8

Problem P (Probability & Set Theory) [Proposed by Marcin J. Zygmunt from University of Silesia, Katowice
(Poland)]
Let n be a fixed positive integer. The random experiment involves repeatedly rolling a fair die
and recording the subsequent results until we get n consecutive ones. Calculate the expected
value of the total sum of points obtained. We assume the stochastic independence of rolls.
Solution to this problem is on page no. 9
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Excerpt from the Rules
...

&7 Problems
...

7. Solutions are evaluated (both in the individual and team part) in the following scale:
0, 3, 8, 10 points, where:

a) 10 points are awarded for a complete solution (even with minor errors);

b) 8 points are awarded for a solution that is basically correct but contains major faults (e.g.
a calculation error that simplified the reasoning, lack of substantial justification, etc.);

c) 3 points are awarded for a solution that is incomplete but contains a major step towards a
correct solution;

d) 0 points are awarded to every other solution, even partial.

8. Solutions should be formulated in a clear, precise and legible manner that excludes am-
biguity; unclear, imprecise or difficult to read solutions may result in a reduction in points,
down to 0 points.

9. Solutions that merely cite statements, lemmas or theorems from the scientific literature
will not be accepted. The Competition is not a contest of encyclopaedic knowledge, its aim is
to test one’s own ability to solve mathematical problems and to present a complete reasoning.

...
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SOLUTIONS
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Solution to the Problem A:

n∑
k=m

(−1)k−m

(
k

m

)(
n

k

)
=

n∑
k=m

(−1)k−m n!

m! (k −m)!

n!

n! (n− k)!
=

=

{
1 if n = m
(
∏n

k=n−m+1 k)(
∑n−m

j=0 (−1)j(n−m
j ))

m! =
(
∏n

k=n−m+1 k)(1−1)n−m

m! = 0 if k > m.

2

⋄ ⋄
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Solution to the Problem C:
Yes, such a sequence exists. There are many simple examples of such sequences.
7 The convergence of the series does not depend on a finite number of first terms of its initial
terms, so we can define the sequence (an) as a1 = a2 = 1 and an =

2 ln lnn

lnn
= 2 logn(lnn) for

n ⩾ 3. So we have
n1+an = n1+2 logn lnn = n ln2 n .

By Cauchy’s Condensation Test the convergence of the series
∞∑

n=1

1

n ln2 n
is equivalent to the

convergence of the series
∞∑

n=1

2n
1

2n ln2(2n)
=

∞∑
n=1

1

n2 ln2 2
,

so the series converges. 2

⋄ ⋄
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Solution to the Problem E:
Fix n and suppose (x, y) is a solution. Without loss of generality, assume

x ≤ y.

Case 1: x ≤ n. Equation (1) becomes

1 +
y!

x!
=

3n! · n!
x!

. (2)

This implies
1 +

y!

x!
≡ 0 (mod 3).

Hence x < y, and moreover the factor y!
x! = (x+ 1)(x+ 2) · · · y is not divisible by 3. Thus in the

interval [x+ 1, y] no multiple of 3 can occur, forcing y ≤ x+ 2.
So there are two possibilities:

1. y = x+ 1,

2. y = x+ 2.

Subcase (a): y = x+ 2. Then (2) gives

1 + (x+ 1)(x+ 2) =
3n! n!

x!
. (3)

The left-hand side is odd, so the right-hand side must also be odd. Hence n ≤ x+ 1.
– If n = x, then (3) becomes

x2 + 3x+ 3 = 3x!.

For x ≥ 1, the left-hand side ≡ 3 (mod 9), whereas 3x! is divisible by 9 when x!≥ 2. Contra-
diction.
– If n = x+ 1, then (3) gives

1 + (x+ 1)(x+ 2) = 3(x+1)!(x+ 1).

This forces x+1 | 1, hence x = 0, so (x, y, n) = (0, 2, 1). By symmetry also (2, 0, 1) is a solution.
Subcase (b): y = x+ 1. Then (2) gives

x+ 2 =
3n! n!

x!
. (4)

If n ̸= x, then the right-hand side is divisible by x + 1, while the left-hand side is congruent
to 1 modulo x+ 1. Impossible. Thus n = x and we get

x+ 2 = 3x!.

The unique solution is x = 1, giving (1, 2, 1), and by symmetry (2, 1, 1).
So in Case 1 we obtain four solutions:

(0, 2, 1), (2, 0, 1), (1, 2, 1), (2, 1, 1).

Case 2: x > n.
Equation (1) becomes

x!

n!
+

y!

n!
= 3n!. (5)

If x ≥ n + 2, then both x! /n! and y! /n! contain factors (n + 1)(n + 2), so the left-hand side
is divisible by both n + 1 and n + 2, while the right-hand side is a pure power of 3. This is
impossible, hence we must have x = n+ 1.
Thus (5) becomes

n+ 1 +
y!

n!
= 3n!. (6)

Write M = y!
(n+1)! . Then

(n+ 1)((n+ 1)M + 1) = 3n!. (7)
If y ≥ n+4, then M is divisible by 3, hence (n+1)M +1 is not a power of 3. Contradiction. So
y ≤ n+ 3, giving three subcases.
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• y = n+ 1: Then M = 1, and (7) gives (n+ 1)(n+ 2) = 3n!, impossible.

• y = n+ 2: Then M = n+ 2, so (7) gives (n+ 1)(n+ 3) = 3n!, also impossible.

• y = n+ 3: Then M = (n+ 2)(n+ 3), so (7) gives

(n+ 1)((n+ 2)(n+ 3) + 1) = 3n!.

If n = 3k− 1, this equals 9k(3k2+3k+1). Since 3k2+3k+1 ≡ 1 (mod 3), the right-hand
side cannot be a pure power of 3. Contradiction.

Thus Case 2 yields no solutions. The only solutions are

(x, y, n) ∈ {(0, 2, 1), (2, 0, 1), (1, 2, 1), (2, 1, 1)}.

2

⋄ ⋄

7



Solution to the Problem G:
Define

S := AB +BA−A−B − In.

Since A,B are symmetric, S is symmetric.
Taking trace both sides

Tr(SS∗) = Tr(S2) = Tr(A2B − 2ABA+BA2) = 0,

Thus S = 0 and AB +BA = A+B + In.
Now consider any x ∈ Rn:

xT (A2 +B2)x = ∥Ax∥2+∥Bx∥2≥ 0.

Moreover, xT (A2 +B2)x = 0 if and only if Ax = 0 and Bx = 0. Hence

ker(A2 +B2) = kerA ∩ kerB.

Suppose x ∈ kerA ∩ kerB. Then Ax = 0 and Bx = 0, and using (1):

0 = (AB +BA)x = (A+B + In)x = 0 + x,

which gives x = 0. Therefore
ker(A2 +B2) = {0}.

Thus A2 +B2 is invertible and
rank(A2 +B2) = n.

2

⋄ ⋄
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Solution to the Problem P:
We solve a much wider problem: Let a fair die has N faces with c0, c1, . . . , cN−1 points on
its faces and let a random process consists of repeatedly tossing it until n consecutive c0 are
tossed. We will calculate the expected value of the total sum of points obtained.
Let En the expected value of the sum of points tossed until n consecutive c0-es are obtained.
We proceed by induction on n.
For the initial case let Xk the result of k-th throw and by N – the total number of tosses until
first c0 appears. We have X1, . . . , XN−1 ∈ {c1, . . . , cN−1} and XN = c0, so

E(X1 + · · ·+XN | N = k) = (k − 1)
c1 + · · ·+ cN−1

N − 1
+ c0 .

The probability of P(N = k) can be calculated from Bernoulli’s process i.e., P(N = k) =
(N−1)k−1

Nk , hence

E1 =

∞∑
k=1

E(X1 + · · ·+XN | N = k)P(N = k)

=

∞∑
k=1

c1 + · · ·+ cN−1

N − 1
· (k − 1)(N − 1)k−1

Nk
+ c0

∞∑
k=1

(N − 1)k−1

Nk

=
c1 + · · ·+ cN−1

N(N − 1)
·

N−1
N(

1− N−1
N

)2 +
c0
N

· 1(
1− N−1

N

)
= c0 + c1 + · · ·+ cN−1 ,

Now let Hn denote a random variable equal to the sum of points tossed in the process where
n consecutive “c0”-es are obtained. To obtain n+1 consecutive “c0”-es we need first to have n
consecutive “c0”-es. The sum of tossed points during this part equals to the random variable
Hn. Then either with probability 1

N the next “c0” appears (so the process stops and we have
the final sum Hn+ c0), or with the probability N−1

N we restart the process from the beginning,
remembering the number of points Hn plus those just tossed, that we have already counted.
Hence we get the equality

En+1 =E(Hn+1) =
1

N
(E(Hn) + c0) +

N − 1

N

(
E(Hn) +

c1 + · · ·+ cN−1

N − 1
+ E(H̃n+1)

)
=En +

c0 + · · ·+ cN−1

N
+

N − 1

N
En+1 ,

where H̃n+1 is a new random variable with the same distribution (and the same expected value)
as Hn+1 due to the independence of tosses. So finally En+1 = N En + (c0 + · · ·+ cN−1) . Solving
this simple recurrence gives

En = (Nn−1 + · · ·+N + 1)(c0 + · · ·+ cN−1) =
Nn − 1

N − 1
(c0 + · · ·+ cN−1) .

In our case, with N = 6 and c0 + · · ·+ cN−1 = 1 + · · ·+ 6 = 21, we finaly get

En =
21

5
(6n − 1) .

2

⋄ ⋄
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