
PROBLEMS for team part

Problem A1 [Proposed by Pirmyrat Gurbanov & Murat Chashemov from International University for the Humanities and
Development (Turkmenistan)]
Let (R,+, ·) be a commutative ring with identity and let I, J be ideals of R. If R is a Principal
Ideal Domain and R = I + J , prove that I ·J = I ∩ J .
Remark
An ideal I of a commutative ring R is a subset I⊂R such that it is closed under addition, and
a·b ∈ I for all a∈I and b∈R.
The product of two ideals I and J is by definition equal to

I · J =

{
n∑

k=1

ak ·bk | ak∈I, bk∈J, n∈N

}
.

Problem A2 [Proposed by Robert Skiba from Nicolaus Copernicus University in Toruń (Poland)]
Let G be a finite group that is not commutative. Show that

P (G) =
|{(x, y) ∈ G×G : xy ̸= yx}|

|G×G|
≥ 3

8
.

Problem C1 [Proposed by Marcin J. Zygmunt from University of Silesia, Katowice (Poland)]

Does there exist a bijection f :N → N such that
∞∑

n=1

1

n f(n)
∈ Q ?

Problem C2 [Proposed by Robert Skiba from Nicolaus Copernicus University in Toruń (Poland)]
Let Ω = {z ∈ C:−1 < Re z < 1} and S be the set of all analytic functions f : Ω → C satisfying
|f(z)|< 1 for all z ∈ Ω and f(0) = 0. Evaluate sup

f∈S
|f(i)|.

Problem E1 [Proposed by Marcin J. Zygmunt from University of Silesia, Katowice (Poland)]
Find all positive x such that

(
1

2

)x

+ x1/2 =
√
2 .

Problem E2 [Proposed by Thomas Zürcher from University of Silesia in Katowice (Poland)]
Are there noncontinuous functions f : (0,∞) → (0,∞) such that

f(x+ y) =
f(x)f(y)

f(x) + f(y)
,

for all x, y ∈ (0,∞) ?

Problem G1 [Proposed by Marcin J. Zygmunt from University of Silesia, Katowice (Poland)]
Triangle △ABC can be fully covered by 2025 discs of diameter 2. Determine whether it can

be covered by 8100 discs of diameter 1.

Problem G.2 [Proposed by Leszek Pieniążek from Jagiellonian University, Kraków (Poland)]
Let n ≥ 2 and k < n be positive integers, and let U, Vi ⊂ Rn be linear subspaces of dimensions
dimU = k and dimVi = n − 1 for i = 1, 2, . . . , n respectively. Let M be the n×n matrix with
entries mij = dim(Vi + U) ∩ Vj + dimVi ∩ U . Find all possible values of determinant detM .

Problem P.1 [Proposed by Marcin J. Zygmunt from University of Silesia, Katowice (Poland)]

Let ξ0 = 1, and let σn =

n∑
k=0

ξk, where ξn are chosen at random uniformly from [0, σn−1] for all

n = 1, 2, . . . .

Show that
∞∑

n=0

ξn
2n

converges with probability 1 and calculate its expected value.
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Problem P2 [Proposed by Marcin J. Zygmunt from University of Silesia, Katowice (Poland)]
Dirk is exploring an abandoned mine. The tunnels form an infinite regular tree, in which

every node, including the root node that serves as the mine’s entrance, is of degree d, where
d ⩾ 2. He begins a random walk at the root node. Then, at each node, he chooses one of the d
available tunnels with equal probability, including the tunnel he used to arrive at that node.
He continues this process until he returns to his starting point at the root node, i.e. to the exit
from the mine.
What is the probability that Dirk will eventually return to his starting point in a finite number
of steps?
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Excerpt from the Rules
...

&7 Problems
...

7. Solutions are evaluated (both in the individual and team part) in the following scale:
0, 3, 8, 10 points, where:

a) 10 points are awarded for a complete solution (even with minor errors);

b) 8 points are awarded for a solution that is basically correct but contains major faults (e.g.
a calculation error that simplified the reasoning, lack of substantial justification, etc.);

c) 3 points are awarded for a solution that is incomplete but contains a major step towards a
correct solution;

d) 0 points are awarded to every other solution, even partial.

8. Solutions should be formulated in a clear, precise and legible manner that excludes am-
biguity; unclear, imprecise or difficult to read solutions may result in a reduction in points,
down to 0 points.

9. Solutions that merely cite statements, lemmas or theorems from the scientific literature
will not be accepted. The Competition is not a contest of encyclopaedic knowledge, its aim is
to test one’s own ability to solve mathematical problems and to present a complete reasoning.

...
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SOLUTIONS
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Solution to the Problem A1:
Let x ∈ I ·J . By definition of the product of ideals, we can write

x =

n∑
k=1

ak ·bk,

where ak ∈ I and bk ∈ J .
Since I is an ideal, ak ∈ I implies ak ·bk ∈ I (because ideals are closed under multiplication
with elements of R). Similarly, J is an ideal, so bk ∈ J implies ak ·bk ∈ J .
Thus, ak ·bk ∈ I ∩ J for all k. Since I ∩ J is closed under addition, it follows that

x =

n∑
k=1

ak ·bk ∈ I ∩ J.

Therefore, I ·J ⊆ I ∩ J .
Let t ∈ I ∩ J . Then t ∈ I and t ∈ J .
Since R is a PID, the ideals I and J are principal. Let I = (a) and J = (b) for some a, b ∈ R.
This means every element of I is of the form r ·a for some r ∈ R, and every element of J is of
the form s·b for some s ∈ R.
The condition R = I + J implies that there exist u ∈ I and v ∈ J such that

1 = u+ v.

Since u ∈ I and v ∈ J , we can write u = r·a and v = s·b for some r, s ∈ R. Hence,

1 = r·a+ s·b.

Now, consider t ∈ I ∩ J . Since t ∈ I, we can write t = t·1. Substituting 1 = r·a+ s·b gives

t = t·(r·a+ s·b) = (t·r)·a+ (t·s)·b.

The term (t·r)·a ∈ I ·J because t·r ∈ J and a ∈ I. Similarly, (t·s)·b ∈ I ·J because t·s ∈ I and
b ∈ J .
Thus, t ∈ I ·J , and it follows that I ∩ J ⊆ I ·J .
Since IJ ⊆ I ∩ J and I ∩ J ⊆ IJ , we conclude that

I ·J = I ∩ J.

2

⋄ ⋄
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Solution to the Problem A2:
Note first that

|{(x, y) ∈ G×G : xy ̸= ba}|= |G|2−|{(x, y) ∈ G×G : xy = yx}|.

So it suffices to bound from above

|{(x, y) ∈ G×G : xy = yx}|
|G|2

.

Let
CG(x) = {y ∈ G : xy = yx}, Z(G) = {x ∈ G : xy = yx for all y ∈ G}.

For a non-abelian group G, we use the following standard facts (with proofs for completeness):

• If x /∈ Z(G), then |G : CG(x)|≥ 2, hence |CG(x)|≤ |G|/2. Consider the conjugation
action of G on itself: g · x = gyg−1. The stabilizer of x is exactly CG(x), while the orbit is
the conjugacy class Cl(x) = {gxg−1 : g ∈ G}. By the orbit–stabilizer formula,

|Cl(x)|= |G : CG(x)|.

If a /∈ Z(G), there exists g ∈ G with gx ̸= xg, so gxg−1 ̸= x and |Cl(x)|≥ 2. Hence
|G : CG(x)|≥ 2, i.e. |CG(x)|≤ |G|/2.

• Since G is non-abelian, G/Z(G) is not cyclic; in particular |G : Z(G)|≥ 4. Suppose
for contradiction that G/Z(G) is cyclic, say G/Z(G) = ⟨gZ(G)⟩. Then every x ∈ G can be
written x = zgk with some z ∈ Z(G) and k ∈ Z. For arbitrary x = z1g

i and y = z2g
j we

get
xy = z1z2g

i+j = z2z1g
j+i = yx,

because z1, z2 are central and powers of g commute. Thus G would be abelian, a contra-
diction. Therefore G/Z(G) is not cyclic. Since every group of order 1, 2, 3 is cyclic, we
must have |G : Z(G)|/∈ {1, 2, 3}, hence |G : Z(G)|≥ 4, i.e. |Z(G)|/|G|≤ 1/4.

Moreover,

|{(x, y) ∈ G×G : xy = yx}|
|G|2

=
1

|G|2
∑
a∈G

|CG(a)|

=
1

|G|2
(
|Z(G)|·|G|+

∑
x∈G\Z(G)

|CG(x)|
)

=
1

|G|

|Z(G)|+
∑

x/∈Z(G)

|CG(x)|
|G|


≤ 1

|G|

(
|Z(G)|+ |G|−|Z(G)|

2

)
=

1

2

(
1 +

|Z(G)|
|G|

)
≤ 1

2

(
1 +

1

4

)
=

5

8
.

Therefore,

P (G) = 1− |{(x, y) ∈ G×G : xy = yx}|
|G|2

≥ 1− 5

8
=

3

8
.

2

⋄ ⋄
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Solution to the Problem C1:
The answer is affermative. See for instance the function

f(n) =


2, for n = 1;

n+ 2, for even n;

n− 2, for odd n > 1.

We will show that f satisfies problem’s condition. Indeed
∞∑

n=1

1

n f(n)
=

1

1 · 2
+

∞∑
k=1

1

2k (2k + 2)
+

∞∑
k=1

1

(2k + 1)(2k − 1)

=
1

2
+

1

4

∞∑
k=1

(
1

k
− 1

k + 1

)
+

1

2

∞∑
k=1

(
1

2k − 1
− 1

2k + 1

)
=
1

2
+

1

4
+

1

2
= 1 ∈ Q .

2

⋄ ⋄
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Solution to the Problem C2:
A standard tool is the following
Schwarz Lemma

If F : D → D is holomorphic with F (0) = 0, then |F (w)|≤ |w| for all w ∈ D.
We map Ω onto the unit disk. Define

g(z) = e
πi
2 z, h(w) =

w − 1

w + 1
, φ = h ◦ g.

For z = x + iy with −1 < x < 1, we have g(z) = e

πi

2
x−

π

2
y
, which lies in the right half-plane

{w : Re w > 0}. The map h(w) = w−1
w+1 sends the right half-plane onto the unit disk D. Indeed,

if w = x+ iy then

|h(w)|< 1 ⇐⇒ |w − 1|< |w + 1| ⇐⇒ (x− 1)2 + y2 < (x+ 1)2 + y2 ⇐⇒ x > 0,

so Re w > 0 corresponds exactly to |h(w)|< 1. Moreover h−1(z) =
1 + z

1− z
shows bijectivity.

Thus φ : Ω → D is a map with φ(0) = 0. For any f ∈ S, define F = f ◦ φ−1 : D → D. Then
F (0) = 0, so by Schwarz’ lemma,

|F (w)|≤ |w|, w ∈ D.

In particular,
|f(z)|= |F (φ(z))|≤ |φ(z)|, z ∈ Ω.

Therefore
sup
f∈S

|f(i)|= |φ(i)|.

Finally, compute:

g(i) = e

πi

2
i
= e

−
π

2 =: t, φ(i) = h(t) =
t− 1

t+ 1
= −1− t

1 + t
.

So
|φ(i)|= 1− e−π/2

1 + e−π/2
= tanh

(π
4

)
.

Answer:
sup
f∈S

|f(i)|= tanh
(π
4

)
.

The supremum is attained by the extremal functions f(z) = eiθφ(z), θ ∈ R.
2

⋄ ⋄
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Solution to the Problem E1:
Direct calculation shows that x =

1

2
is a solution. Indeed,

(
1

2

)1/2

+

(
1

2

)1/2

=

√
2

2
+

√
2

2
=

√
2 .

To prove that this solution is unique, we shall show that the function f(x) =

(
1

2

)x

+ x1/2 is
strictly increasing for all x > 0. The derivative of f is equal to

f ′(x) =

(
1

2

)x

ln
1

2
+

1

2x1/2
= −

(
1

2

)x

ln2 +
1

2
√
x

,

so the function f is strictly increasing if f ′(x) > 0 for all x > 0. This condition is equivalent to
the inequality

1

2
√
x

>

(
1

2

)x

ln2,

which can be rearranged as
1 >

√
x 21−x ln2. (26.1)

Since the right-hand side of (26.1) is positive for x > 0, we may prove the inequality by showing
that the square of the right-hand side is always less than 1.
Let

g(x) =
(√

x 21−x ln2
)2

= x 41−x (ln2)2.

We note that both lim
x→0+

g(x) = 0 and lim
x→+∞

g(x) = 0. As g(x) is positive for x ∈ (0,∞), it must
attain a global maximum at a critical point. Differentiating gives

g′(x) = 41−x (ln2)2(1− x ln4).

Setting g′(x) = 0 yields the unique critical point a0 = 1
ln4 = log4 e < 1. The maximum value of

g is therefore
g(a0) = a0 4

1−a0 (ln2)2 =
41−log4e (ln2)2

2 ln2
=

4

2e
ln2 < 1

as both factors are less than 1. This implies that the right-hand side of inequality (26.1) is also
less than 1 for all x > 0. Therefore, the function f is strictly increasing. A strictly increasing
function can assume any given value at most once, so the solution x =

1

2
is unique. 2

⋄ ⋄
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Solution to the Problem E2:
Plugging in x = y, we obtain

f(2x) = f(x+ x) =
f(x)2

2f(x)
=

1

2
f(x).

With x = 2x and y = x, we have

f(3x) = f(2x+ x) =
f(2x)f(x)

f(2x) + f(x)
=

1
2f(x)

2

1
2f(x) + f(x)

=
1
2f(x)

2

3
2f(x)

=
1

3
f(x).

We claim that for n ∈ N, we have
f(nx) =

1

n
f(x).

We prove the statement via induction over n. Having it clearly for n = 1, we assume that it
holds for some n ∈ N. Then, plugging in x = nx and y = x:

f((n+ 1)x) = f(nx+ x) =
f(nx)f(x)

f(nx) + f(x)
=

1
nf(x)

2(
1
n + 1

)
f(x)

=
1
nf(x)
n+1
n

=
1

n+ 1
f(x).

Thus, we have f(nx) = 1
nf(x) for all x ∈ R∗

+ and n ∈ N. Replacing x by x/n:

f(x) =
1

n
f
(x
n

)
,

and thus for all x ∈ R∗
+ and n ∈ N

f
(x
n

)
= nf(x).

Furthermore,
f
(m
n
x
)
=

1

m
f

(
1

n
x

)
=

n

m
f(x).

For each q ∈ Q∗
+, we have

f(q) =
1

q
f(1).

Let us show now that f is monotone decreasing. Assume that x, y ∈ R∗
+ with x < y. Then

f(y) = f(x+ y − x) =
f(x)f(y − x)

f(x) + f(y − x)
,

so
f(y)

f(x)
=

f(y − x)

f(x) + f(y − x)
≤ 1,

giving the monotonicity.
Fix x0 ∈ R∗

+. We approximate it by two sequences (qn)n and (rn)n of rational numbers, the first
one being strictly increasing approaching x0 from the left, and the second one being strictly
decreasing approaching x0 from the right. Then

1

rn
f(1) = f(rn) ≤ f(x0) ≤ f(qn) =

1

qn
f(1).

Taking the limit as n approaches 0 gives

f(x0) =
1

x0
f(1).

So, all solutions are continuous.
We even can give all the solutions. Note that if c ∈ R∗

+, then f(x) = c
x is a solution:

f(x+ y) =
c

x+ y

and
f(x)f(y)

f(x) + f(y)
=

c2

xy
c
x + c

y

=

c2

xy
cy+cx
xy

=
c

x+ y
.

We are done. 2
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⋄ ⋄

Solution 2.:
We assume first that f is a solution of the equation (leaving it open for now whether the
solution is continuous). As the target does not include 0, the function g := 1/f is well-defined.
Furthermore, it is clear that the target is R∗

+ as well. We have

g(x+ y) =
1

f(x+ y)
=

f(x) + f(y)

f(x)f(y)
,

and to ease our mind, we note that the denominator does not vanish. Hence,

g(x+ y) =
1

f(y)
+

1

f(x)
= g(y) + g(x).

We want to show that g has to be continuous. First, we show that g(p/q) = pg(1)/q for p, q ∈ N.
We start with arguing that g(n) = ng(1) for all n ∈ N. We do so by induction over n. The claim
being trivial for n = 1, we assume that it holds for some n ∈ N. Then,

g(n+ 1) = g(n) + g(1) = ng(1) + g(1) = (n+ 1)g(1).

By induction, we see that for all n ∈ N and ak ∈ R∗
+ for k ∈ {1, . . . , n},

n∑
k=1

g(ak) = g

(
n∑

k=1

ak

)
.

Now, we show that g(1/n) = g(1)/n for n ∈ N, this is ng(1/n) = g(1) for all n ∈ N. But, by the
above

ng(1/n) =

n∑
k=1

g(1/n) = g

(
n∑

k=1

1

n

)
= g(1).

Finally,

g

(
p

q

)
= g

(
p∑

k=1

1

q

)
=

p∑
k=1

g

(
1

q

)
= pg

(
1

q

)
=

p

q
g(1).

Next, we argue that g is monotone. For this, it is crucial that g does not attain negative values.
Let x, y ∈ R∗

+ with x < y. Then,

g(y) = g(x+ (y − x)) = g(x) + g(y − x) ≥ g(x) + 0 = g(x).

Assume now that g is not continuous at some point x0 ∈ R∗. We approximate it by two se-
quences (qn)n and (rn)n of rational numbers, the first one being strictly increasing approaching
x0 from the left, and the second one being strictly decreasing approaching x0 from the right.
Thus,

qng(1) ≤ g(x0) ≤ rng(1),

and taking the limit, we see that g(x0) = x0g(1). In conclusion, there is some constant c ≥ 0

such that g(x) = cx for all x ∈ R. Hence, f(x) = c′

x for some constant c′ ≥ 0, and f is thus
continuous. 2

⋄ ⋄
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Solution to the Problem G1:
Yes, the answer is affermative. Let K,L,M be the midpoints of the sides of triangle △ABC
(see the figure)

A

B

C

M
L

K

Q

Figure 1: Figure to the Problem 33

The triangles △AKM , △BKL, and △CLM are the images of △ABC under homotheties with
a scale factor of 1

2 , centered at the corresponding vertices A, B, and C. Furthermore, triangle
△KLM is the image of △ABC under a homothety with a scale factor of − 1

2 , centered at the
centroid Q of △ABC.
Therefore, each of the small triangles can be covered by 2025 discs of radius 1, which are images
of the original discs covering △ABC. Hence, the entire triangle △ABC can be covered by 8100
discs of radius 1.

2

⋄ ⋄
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Solution to the Problem G2:

Lemma (39).1
For any linear subspaces V1, V2, V3 ⊂ Rn and (k, l,m): a permutation of (1, 2, 3) define

dk = dimVk ∩ (Vl + Vm) + dimVl ∩ Vm.

Equality d1 = d2 = d3 holds.
Proof: One can check, that the common value is

dk = dimVk ∩ Vl + dimVk ∩ Vm + dimVl ∩ Vm − dimVk ∩ Vl ∩ Vm.

⋄
Using the lemma reformulates definition of matrix M in more symmetrical form

mij = dim(Vi + Vj) ∩ U + dimVi ∩ Vj .

Case Vi = Vj . Rows number i and j are equal, so detM = 0.
Case Vi ̸= Vj for any i, j. Obviously Vi + Vj = Rn and detVi ∩ Vj = n − 2 for i ̸= j. So every
number out of the diagonal is equal k + n− 2.

Further mii =

{
k + n− 1 if U ⊂ Vi

k + n− 2 if U ̸⊂ Vi

. For any j it is possible to choose Vi in such a way

that precisely j of them fulfil U ⊂ Vi, so every number on diagonal can be of those two forms
independently. But if there are at least two numbers k+n− 2, then there are two equal rows,
so determinant is 0.
Below, using elementary operations on rows shows how to get result. Let a = k + n− 2.

det


a+1 a . . . a a
a a+1 . . . a a
...

... . . . ...
...

a a . . . a+1 a
a a . . . a a+1

 = det


1 0 . . . 0 −1
0 1 . . . 0 −1
...

... . . . ...
...

0 0 . . . 1 −1
a a . . . a a+1

 = det


1 0 . . . 0 −1
0 1 . . . 0 −1
...

... . . . ...
...

0 0 . . . 1 −1
0 0 . . . 0 na+1

 = na+1;

det


a+ 1 a . . . a a
a a+ 1 . . . a a
...

... . . . ...
...

a a . . . a+ 1 a
a a . . . a a

 = det


1 0 . . . 0 0
0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0
a a . . . a a

 = a.

The possible results are: 0, k + n− 2, n(k + n− 2) + 1. 2

⋄ ⋄
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Solution to the Problem P1:
We have

E(ξn|σn−1) = E(ξn|ξn−1, ξn−2, . . . , ξ1) =
σn−1

2

for n⩾1. On the other hand σn = σn−1 + ξn, hence

E(σn|σn−1) = σn−1 + E(ξn|σn−1) =
3

2
σn−1 .

So
E(ξn) = E

(
E(ξn|σn−1)

)
=

E(σn−1)

2
=

1

2

3

2
E(σn−2) =

3n−1

2n
E(σ0) =

3n−1

2n
.

Thus (all variables are non negative, so we can put out summation by Tonelli’s Theorem)

E

( ∞∑
n=0

ξn
2n

)
= ξ0 +

∞∑
n=1

E(n)
2n

= 1 +
1

3

∞∑
n=1

(3
4

)n
= 2 ,

which shows also that the series converges with probability 1. 2

⋄ ⋄
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Solution to the Problem P2:
The problem can be modeled as a one-dimensional random walk on the set of non-negative
integers Z+{0, 1, 2, . . . }, where the position corresponds to Dirk’s distance (depth) from the
root. At any depth m > 0, the probability of moving one step closer to the root (so to the left)
is p = 1

d , and the probability of moving one step further away (to the right) is 1− p = d−1
n .

Let A denote the event of eventually returning to the starting point, and let An be the event
that the first return to the starting point occurs after n steps. Clearly, n must be even. To
derive the probability of An, we note that a path returning to the root for the first time at step
n = 2k must have spent the previous n−2 steps returning to the first node it visited, without
hitting the root, before taking the final step back to the origin. The number of such paths is
related to the Catalan numbers. Hence the probability of a first return at step n is therefore
given by

P(An) =

{
0, n = 0 or n is odd,
Ck−1p

k(1− p)k−1, n = 2k, k ⩾ 1.

The following lemma will be required.
Lemma (47).1

Let f(x) =
∞∑

n=0

Cnx
n, where Cn is the n-th Catalan’s number. Then

f(x) =
1−

√
1− 4x

2x

and the series converges for |x|< 1
4 .

Proof: The proof uses the recurrence relation for Catalan numbers,

Cn+1 =

n∑
k=0

CkCn−k .

It follows that

f(x)2 =

∞∑
n=0

(
n∑

k=0

CkCn−k

)
xn =

∞∑
n=0

Cn+1x
n =

f(x)− C0

x
.

Since C0 = 1, this yields the quadratic equation x f(x)2 − f(x) + 1 = 0 as C0 = 1. Solving it

for f gives two potential solutions f(x) =
1±

√
1− 4x

2x
=

2

1∓
√
1− 4x

. However, the function
f converges at x = 0, which is only satisfied by choosing the negative sign. Thus

f(x) =
1−

√
1− 4x

2x
.

⋄
We can now calculate the total probability

P(A) =
∑
n

P(An) =

∞∑
k=1

Ck−1p
k(1− p)k−1

= p

∞∑
n=0

Cn (p(1− p))
n
= p f(p(1− p)) =

1−
√
1− 4p(1− p)

2(1− p)
.

Noting that 1− 4p(1− p) = 1− 4p+ 4p2 = (1− 2p)2 yields

P(A) =
1− |1− 2p|
2(1− p)

=

{
p

1−p , for 1 > 2p,

1, for 1 ⩽ 2p.

In our case p =
1

d
, where n ⩾ 2, therefore the probability that Dirk eventualy returns to the

starting point is

P(A) =
1
d

d−1
d

=
1

d− 1
.

Remark
The other solutions based on recurrence has a fundamental flaw: they lead to a quadratic
equation of the form nP (A)2 − (d − 1)P (A) + 1 = 0, which has two solutions, P (A) = 1 or
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P (A) = 1
d−1 . There is a precise mathematical argument to decide which of these two solutions

is correct, but I do not report it here.
2

⋄ ⋄
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