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Observation of Gravitational Waves from a Binary Black Hole Merger

week ending
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(Received 21 January 2016; published 11 February 2016)

Test Hanford, Washington (H1) Livingston, Louisiana (L1)
Mass T T T T T T T T
1.0
0.5
0.0
-0.5}F -
E r,_.:_\ -1.0F — T— L1 observed . . —
- ) | | i H1 obser:/ed (shifted, |mllerted) i |
1l 2 T T T T T T T T
= *E 1.0+ -
s 05} e
jus
& 0.0
-0.5
-10 H — Numerical relativity — Numerical relativity
Reconstructed (wavelet) Reconstructed (wavelet)
TESt I Reconstructed (template) I Reconstructed (template)
Mass T T 1 T T 1
Power Beam | =4k
Recyclmg Splitter = x~ m——
LSEE 20W & 100 kW Circulating Power
Source Test Test
Signal Mass Mass
Recycling

"W Photodetector




Grawtacja wedtug
Newtona

i Fr=F=G

Prawo powszechnego cigzenia (16871



Co sie stanie gdy jedna z mas
sie ruszy?

Zmiana sity natychmiast po zmianie potozenia c



Teoria grawitacji
Einsteina

W oddziatywaniu mas posredniczy sama czasoprzestrzen!



Fale grawitacyjne

Rozchodzgce sie, unoszgce energie odksztatcenia
czasoprzestrzeni
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Uktad podwdjny biatych Odksztatcenia przestrzeni na
kartéw Ziemi

Niestety baaaaardzo stabe!

Obiekt dtugosci 1m zmieni swoj rozmiar o 10-22m



Po co wykrywac fale
grawitacyjne?

Nowe mozliwosci
obserwacji bardzo

wczesnego
i . _Wszech}
Nowe informacje o
czarnych dziurach i
innych
egzotycznych
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Najlepsze narzedzie do
pomiarow odlegtosci...




Interferencja swiatta

Rézne barwy, rézna dtugosc fali

ultrafiolet widmo $wiatia widzialnego podczerwier

400 nm 500 nm 600 nm 700 nm

\/ 't Interferencja konstruktywna
' dla réznych grubosci warstwy,
roznych katow,...




Interferometr

czyli interferencja pod kontrola

A=

lustro pétprzepuszczalne
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lustro poétprzepuszczalne lustro



Interferometr

czyli interferencja pod kontrola
I = Iycos? (mAl/)N)
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lustro potprzepuszczalne lustro

Zmiany potozen luster zmiany natezen Swiatta na wyjsciu



Interferometr Michelsona jako
detektor fal grawitacyjnych

lustro

LIGO - Laser Interferometer Gravitational Wave Observatc
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I = Isin? [27r(l1 —l2)/ A

Example Continuous Gravitational Wave

I ~ Ip(2nAlL/N)?
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Amplituda zmian potozen luster mniejsza niz rozmiar protonu!
Jak mozna to zmierzy<¢ uzywajac swiatta o dtugosci fali rzedu



Interferometr Michelsona jako
detektor fal grawitacyjnych

lustro

LIGO - Laser Interferometer Gravitational Wave Observatc
—— —
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Example Continuous Gravitational Wave

I =~ Iy(2wAL/N)?
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Zalezy od tego jak doktadnie mozna zmierzyc¢ zmiany

Wave Signal




Energia swiatta przenoszona jest
w porcjach
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klasyczna fala

|
”
/4 5 /4 5
o~ —~
(@) _ (@]

D=3

Iy = IO/QMOZemy go zmierzyc tylko w jednym z detektore
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N fotonow
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Dtugosc¢ fali nie fundamentalnym
jest ograniczeniem

(N1) = (N) cos?(¢/2)
=)

b3 Slivavavevay

7 /
potprzepi ¢
Fluktuacje zliczen fotonow Niepewnos¢ estymac;i
fazy:
N; = (Ni) = /(Ny) dp X %

Najlepszy estymator

©(N1, Na) = arccos (N&*;Vz)



Dtugosc fali nie fundamentalnym
jest ograniczeniem
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Najmniejsze wykrywalne zmiany dtugosci ramion
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Czutosc¢ detektora LIGO
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Czy mozna z fotonow
wycisnad
jeszcze wiecej?




Interferencja w jezyku
fotonow . — s an
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lustro poétprzepuszczalne lustro

Aby mozliwa byta interferencja jeden
foton musi poruszac sie dwoma drogami
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Dwa fotony niezalezne
od siebié 2
p1 = cos® (TAL/N)
]

Z =)

lustro potprzepuszczalne
pa = sin® (rAl/)\)
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lustro

kazdy foton interferuje
tylko sam ze sobg!

nie wykorzystujemy korelacji kwantowych - splatania



Stany splatane
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uzywac fotonu o dwa razy wiekszej energii, tzn. dwa razy kroétszej dtug



Splatanie zwieksza
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fotony niezalezne fotony splatane




Straty fotonow niszcza

interferencje
T

/ 2 é/y_)

. lustro lustro pétprzepuszczalne

zysk dzieki splatan
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fotony niezalezne fotony optymalnie splatane

p - prawdopodobienstwo przezycia fotonu



Stany splatane fotonow w
detektorach fal grawitacyjnych

Zwiekszenie liczby obserwacji fal _7
grawitacyjnych o 50%!

Phys. Rev. Lett. 123, 251107 (2U1Y) Phys. Rev. Lett. 123, 231108 (2019)
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Frequency (Hz)

Squeezed light source

35% zmniejszenie szumu dzigki splataniu  réwnowazne zwiekszeniu mocy lasera o 85%!

~100 "kwantowych’ fotonow daje te sama poprawe co dodatkowe 102° fotondéw ,klasycznych



Tak naprawde, wykorzystuje

sie stan scisniet
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Czgstka kwantowa w

potencjale harmonicznym

Zasada nieoznaczonosci
Heisenberga
Aprp > q%[

Czagstka ,,drga” nawet w stanie
podstawowym

2j_prozni...

onductor

Jeden mod pola ~x
elektromagnetycznego o danej
c7estodci
W elektrodynamice kwantowej,
amplitudy p6l Ei B zachowuja sie
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Nie mozna miec jednoczesnie E=0 i
B=0! Fluktuacje prozni!!!

Ale mozna zmniejszy¢ fluktuacje E kosztem
B |tp

Generowana w optycznych procesach
nieliniowych - generacja par fotonéw
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Technologie Kwantowe AD 2024

Obliczenia Komunikacja Metrologia
kwantowe kwantowa kwantowa

Dziekuje!
... I nie dziekuje

Rafat Demkowicz-Dobrzahski, Wydziat Fizyki UW
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